
Functionally Deterministic Scheduling

Frédéric Boniol∗, Claire Pagetti∗,∗∗, François Revest∗∗

∗IRIT-ENSEEIHT, 2 rue C. Camichel. F31071 Toulouse, France
frederic.boniol@enseeiht.fr,

∗∗ONERA-CERT, 2 av. E. Belin. F31055 Toulouse - France
claire.pagetti,francois.revest@cert.fr

Abstract. The aim of this paper is to prove that the question “is a scheduling
functionally deterministic for a given set of periodic real time tasks and a given
conservative scheduling policy” is decidable. For thar purpose, we encode the
tasks and the scheduler by an acyclic stopwatch automaton. We show then that
the previous question can be encoded by a decidable reachability problem.

1 Introduction
Embedded systems architecture is classically decomposed into three main parts. The con-

trol software is often designed by a set of communicating functional modules, also called tasks,
usually encoded with a high level programming language (e.g. synchronous language) or a low
level one (e.g. Ada or C). Each functional module is characterized by real-time attributes (e.g.
period, deadline) and a set of precedence constraints. The material architecture organizes hard-
ware resources such as processors or devices. The scheduler decides in which order functional
modules will be executed so that both precedence and deadline constraints are satisfied.

Behavioral correctness is proved as the result of the logical correctness, demonstrated with
the use of formal verification techniques (e.g. theorem proving or model-checking) on the
functional part, and the real-time correctness which ensures that all the computations in the
system complete within their deadlines. This is a non trivial problem due both to precedence
constraints between tasks, and to resource sharing constraints. This problem is addressed
by the real-time scheduling theory which proposes a set of dynamic scheduling policies and
methods for guaranteeing/proving that a tasks configuration is schedulable.

However, in spite of their mutual dependencies, these two items (functional verification
and schedulability) are seldom addressed at the same time: schedulability methods take into
account only partial information on functional aspects, and conversely the verification problem
of real-time preemptive modules has been shown undecidable (Ermont and Boniol, 2007).
To overcome this difficulty, a third property is often required on critical systems, especially
for systems under certification: determinism, i.e. all computations produce the same results
and actions when dealing with the same environment input. The benefit of this property, if
ensured, is to limit the combinatorial explosion, allowing an easier abstraction of real-time
attributes in the functional view. For instance, preemptive modules may be abstracted by non
preemptive ones characterized by fixed beginning and end dates. The interesting consequence


