
Reliable and Precise WCET and Stack Size Determination
for a Real-life Embedded Application

Philippe Baufreton∗, Reinhold Heckmann∗∗

∗Hispano-Suiza, Etablissement de Réau BP 42
F-77551 Moissy-Cramayel Cédex, France
philippe.baufreton@hispano-suiza-sa.com

http://www.hispano-suiza-sa.com/
∗∗AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany
heckmann@absint.com
http://www.absint.com/

Abstract. Failure of a safety-critical application on an embedded processor can
lead to severe damage or even loss of life. Here we are concerned with two kinds
of failure: stack overflow, which usually leads to run-time errors that are difficult
to diagnose, and failure to meet deadlines, which is catastrophic for systems
with hard real-time characteristics. Classical software validation methods like
simulation and testing with debugging require a lot of effort, are expensive, and
do not really help in proving the absence of such errors.

AbsInt’s tools StackAnalyzer and aiT (timing analyzer) provide a solution to
these problems. They use abstract interpretation as a formal method that leads
to statements valid for all program runs. Both tools have been used success-
fully at Hispano-Suiza to analyze applications running on a Motorola PowerPC
MPC555. They turned out to be well-suited for analyzing large safety-critical
applications developed at Hispano-Suiza. They can be used either during the
development phase providing information about stack usage and runtime be-
havior well in advance of any run of the analyzed application, or during the
validation phase for acceptance tests prior to the certification review.

1 Introduction
Failure of a safety-critical application on an embedded processor can lead to severe dam-

age or even loss of life. Therefore, utmost carefulness and state-of-the-art machinery have to
be applied to make sure that an application meets all requirements. Classical software vali-
dation methods like simulation and testing with debugging require a lot of effort and are very
expensive. Furthermore, they cannot really guarantee the absence of errors. In contrast, ab-
stract interpretation (Cousot and Cousot, 1977) is a formal verification method that yields
statements valid for all program runs with all inputs, e.g., absence of violations of timing or
space constraints, or absence of runtime errors.


