
Using Analogy to Promote Conceptual
Modeling Reuse

Karin K. Breitman, Simone D.J. Barbosa, Marco A. Casanova,
Antonio L. Furtado, Michael G. Hinchey

Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de S. Vicente, 225 – Rio de Janeiro, Brazil – CEP 22451-900
{karin, simone, casanova, furtado}@inf.puc-rio.br, mike.hinchey@usa.net

http://www.inf.puc-rio.br

Abstract. This paper argues in favor of a database conceptual schema and Se-
mantic Web ontology design discipline that explores analogy mappings to re-
use the structure and integrity constraints of conceptual models, stored in a re-
pository. We presuppose that a team of expert conceptual designers would
build a standard repository of source conceptual models, which less experi-
enced designers would use to create new target conceptual models in other
domains. The target models will then borrow the structure and the integrity
constraints from the source models by analogy. The concepts are expressed in
the contexts of Description Logics, the RDF model and OWL to reinforce the
basic principles and explore additional questions, such as the consistency of
the target model.

1 Introduction

Metaphor is not merely a rhetorical device, characteristic of language alone. Lakoff and
Johnson (1980) argue that “the human conceptual system is fundamentally metaphorical in
nature. The essence of metaphor is understanding and experiencing one kind of thing in
terms of another.” Holyoak and Thagard (1995, p. 220) argue that “metaphor uses the same
mental processes as analogical thinking ... a metaphor is understood by finding an analogy
mapping between the target domain (the topic of the metaphor) and the source domain. The
degree to which an analogy is viewed as metaphorical will tend to increase the more remote
the target and source domains are from each other.”

In this paper, we claim that analogy mappings facilitate conceptual modeling by allowing
the designer to reinterpret fragments of familiar conceptual models in other contexts. This
may have applications in developing new versions of ground control systems or flight soft-
ware for a new spacecraft, for example. Exploitation of such an approach requires a sound
approach and a methodology to support conceptual modeling. To that end, we propose a
discipline for database conceptual schema design, and Semantic Web ontologies as well, that
we call conceptual modeling by analogy and metaphor.

The discipline is based on two simple ideas Breitman et al. (2007). First, a team of expert
conceptual designers would build a standard repository of source conceptual models that
cover commonly found conceptual design patterns and that are expressed in familiar terms.
The source conceptual models will naturally contain fully formalized integrity constraints, as
defined by the conceptual design experts. For example, instead of a generic weak entity pat-
tern, the collection will contain a sample model of employees and their dependents, which is

Using Analogy to Promote Conceptual Modeling Reuse

typically used to explain weak entities and is more intuitive to apprehend than any abstract
formulation of the concept. Second, naïve designers would then create new target conceptual
models in other domains by defining analogy mappings with the source conceptual models in
the repository. The target models will then borrow the structure and the integrity constraints
from the source models by analogy – essentially a combination of a straightforward renam-
ing process with consistency checking.

The discipline for database conceptual schema and Semantic Web ontologies design
would then consist of the gradual expansion of conceptual models for specific domains basi-
cally by repeatedly defining analogy mappings.

The contributions of this paper lie in two directions. We define a simple construct,
ISLIKE, to specify analogy mappings. We adopt the weak entity construct as a running exam-
ple since it is well-known, it has a concise description, and yet it looks rather sophisticated to
most naïve designers. Next, we rephrase our proposal in the context of Description Logics
(DL). We chose DL mostly because it is fairly well-known, it has been applied to provide
precise definitions for ER and UML concepts, and it permits discussing consistency of the
target conceptual model, an issue that must not be overlooked. Finally, we discuss how to
specify analogy mappings in the context of the RDF model and OWL – Web Ontology Lan-
guage. We introduce two new properties, isLike and Source, and show how they can be used
to3 creat3target OWL ontologies from source ontologies by analogy.

Winston (1980) is an early reference that describes a theory of analogy with applications

to AI systems. The Berkeley Master Metaphor List is an example of a relatively old (linguis-
tics) metaphor repository Lakoff et al. (1991). Metaphors have been used to improve human-
computer interface design Blackwell (2006), Barbosa and de Souza (2001), Catarci et al.
(1996), in particular, and software design, in general Lippert et al. (2003). Goguen (1999)
describes a formalization of user interface design based on semiotic morphisms. The analogy
mappings we describe throughout the paper are, in some sense, morphisms that preserve the
structure and the integrity constraints of the source schemas.

This paper is organized as follows. Section 2 formalizes the strategy in Description Lo-
gics. Section 3 specifies the conceptual modeling strategy we propose in the context of the
RDF model and OWL. Finally, Section 4 contains the conclusion.

2 Analogy in DL

In this section, we introduce analogy mappings in the context of the Description Logic
(DL). We first briefly review the very basic concepts of DL, referring the reader to Baader
and Nutt (2003) for an introductory account of DL. Then, we formalize the concepts of anal-
ogy mappings and terminologies generated by analogy. For the sake of brevity, we do not
introduce the concept of metaphor mapping. The reader familiar with the basic concepts of
DL may proceed directly to Section 3.2.

2.1 A Brief Review of Attributive Languages

Description logic (DL) refers to a family of knowledge representation formalisms that

model the application domain by defining the relevant concepts of the domain and then using

Breitman et al.

these concepts to specify properties of objects and individuals occurring in the domain
Baader and Nutt (2003). We summarize in this section the syntax and semantics of the family
of attributive languages, or AL-family.

An attributive language L is characterized by an alphabet consisting of a set of atomic
concepts, a set of atomic roles, and the special symbols T and ⊥, respectively called the uni-
versal concept and the bottom concept. (Note that the notion of alphabet here is entirely
similar, but not identical, to that introduced in Section 2.1).

The set of concept descriptions of L is inductively defined as follows:
Any atomic concept and the universal and bottom concepts are concept descriptions.
If A is an atomic concept, C and D are concept descriptions, and R is an atomic role, then

the following expressions are concept descriptions.
 ¬A (atomic negation)
 C ⊓ D (intersection)
 ∀R.C (value restriction)
 ∃R.T (limited existential quantification)
The other classes of languages of the AL-family expand the set of concept descriptions to

include expressions of one of the following forms.
If C and D are concept descriptions, R is an atomic role, and n is a positive integer, then

the following expressions are concept descriptions.
 ¬C (arbitrary negation)
 C ⊔ D (union)
 ∃R.C (full existential quantification)
 (≥ n R) (at-least restriction, a cardinality restriction)
 (≤ n R) (at-most restriction, a cardinality restriction)
 R¯ (inverse role)
An interpretation I for an attributive language L consists of a nonempty set ΔI, the do-

main of I, whose elements are called individuals, and an interpretation function such that:
TI = ΔI and ⊥I = ∅
For every atomic concept A of L, the interpretation function assigns a set AI ⊆ ΔI
For every atomic role R of L, the interpretation function assigns a binary relation RI ⊆ ΔI

× ΔI
Informally, the interpretation function is extended to concept descriptions of L induc-

tively as follows:
(¬A)I denotes the complement of AI with respect to the domain
(C ⊓ D)I denotes the intersection of CI and DI
(∀R.C)I denotes the set of individuals that R relates only to individuals in CI, if any
(∃R.T)I denotes the set of individuals that R relates to some individual of the domain
For the extended family, we have:
(¬C)I denotes the complement of CI w.r.t. the domain
(C ⊔ D)I denotes the union of CI and DI
(∃R.C)I denotes the set of individuals that R relates to some individual in CI
(≥ n R)I denotes the set of individuals that R relates to at least n individuals
(≤ n R)I denotes the set of individuals that R relates to at most n individuals
(R¯)I denotes the inverse of R

Using Analogy to Promote Conceptual Modeling Reuse

Let L be a language in any of the classes of the AL-family. A terminological axiom (writ-
ten) in L or, simply, an axiom, is an expression of the form C ⊑ D, called an inclusion, or of
the form C ≡ D, called an equality, where C and D are concept descriptions in L. A definition
(written) in L is an equality A ≡ D such that A is an atomic concept and D is a concept de-
scription of L.

Let I be an interpretation for L. Then, I satisfies C ⊑ D iff CI ⊆ DI, and I satisfies C ≡ D
iff CI = DI. Let T be a set of axioms. Then, I satisfies T, or I is a model of T, iff I satisfies
each axiom in T. Two sets of axioms are equivalent iff they have the same models.

A terminology (written) in L is a set of axioms T such that, for any atomic concept A of
L, there is at most one definition in T whose left-hand side is A, called the definition of A in
T. We may therefore partition (with respect to T) the atomic concepts of L into defined con-
cepts (with respect to T) that appear in the left-hand side of the definitions in T and primitive
concepts (with respect to T) that do not appear in the left-hand side of the definitions in T.

Our interest in these concepts lies exactly in that there are fairly efficient decision proce-
dures that test satisfiability of terminologies for various dialects of the AL-family.

2.2 Analogy Mappings between Terminologies

Given two attributive languages, S and T, with alphabets A(S) and A(T), an analogy
mapping from A(S) into A(T) is one-to-one mapping α:A(S)→A(T) such that, for any
s∈A(S), if α(s) is defined, then s and α(s) both are atomic concepts or both are atomic roles.
We say that A(S) is the source alphabet and A(T) is the target alphabet of α.

We extend α to the concept expressions and axioms of S in the obvious way: for each
concept expression or axiom t of S, u=α(t) is the concept expression or axiom of T obtained
by replacing each symbol s of A(S) that occurs in t by α(t), if α(t) is indeed defined; if there
is a symbol occurring in t for which α is undefined, then α(t) is undefined. If α(t) is defined,
we also say that u=α(t) is induced by α. (It is left for the reader to show that u is indeed a
concept expression or axiom of T).

Given two attributive languages, S and T, a terminology S written in S, and an analogy
mapping α:A(S)→A(T), we say that a terminology T is created by analogy with S using T
and α iff T is the set of all axioms t in T such that there is s∈ S such that μ(s) is defined and
t=μ(s). Intuitively, each axiom s of S is translated into an axiom t of T, if the analogy map-
ping μ is indeed defined for all symbols that occur in s. We also say that S is the source ter-
minology and T in the target terminology of μ. Note that, as for the ER model, the designer
has a certain degree of freedom when using analogy mappings, since he may block reusing
some of the original axioms simply by omitting the mapping of certain symbols of the source
alphabet A(S).

We have to extend the above definitions, though, since the designer may want to: (i) re-
peatedly apply analogy mappings to create a new terminology out of others; (ii) revise the
axioms induced by an analogy mapping to restore consistency. The first point is entirely
analogous to the discussion in Section 2.3. However, we raised the second point only here
since DL, but not the original ER model, comes equipped with a family of fairly efficient
decision procedures that test satisfiability of terminologies for various dialects of the AL-
family, as already anticipated.

Breitman et al.

Let S and T be two attributive languages, B be a terminology written in T, S be a termi-
nology written in S, and α:A(S)→A(T) be an analogy mapping. We say that a terminology T
expands B by analogy with S using T and α iff T = B ∪ U, where U is the terminology cre-
ated by analogy with S using T and α. Note that T is not necessarily consistent since U adds
new axioms to B that may potentially be inconsistent with the original axioms of B.

This brings us to the second point. We briefly discuss three alternatives here. First, we
may treat T as a typical knowledge base and leave it to the designer the problem of restoring
consistency by deprecating axioms, induced by an analogy mapping or not. The designer
would have to resort to whatever DL reasoner he has in hand to help him in this task.

Second, we may revise the notion of extending a terminology using an analogy mapping
to avoid inconsistencies from the onset. Adopting this second approach, we define that T
consistently expands B by analogy with S using T and α iff T is a maximal consistent subset
of B ∪ U, where U is the terminology created by analogy with S using T and α. This second
approach is just theoretical, since T may not unique and, therefore, the designer may end up
not knowing what would be the outcome of an expansion by analogy.

The third approach is more pragmatic, and is being adopted as part of our proof-of-
concept implementation. We start by considering that the axioms of a source terminology are
ranked. Then, we modify the expansion by analogy process to introduce the axioms from the
source terminology, one by one, in rank order, testing for consistency at each step. If an
inconsistency is found, the process stops with the last consistent expansion found (and asks
for user intervention). This is again possible by combining a DL reasoner with the implemen-
tation of the repository of source conceptual models.

As an example of terminologies created by analogy, consider the terminology EMPLOYEE
defined with an alphabet E consisting of:

Atomic concepts: Emp (the set of employees)
 Dep (the set of dependents)
 No (the set of positive integers)
Atomic roles: EmpNo (assigns an employee number to an employee)
 DepNo (assigns a sequential number to a dependent)

isDepOf (a binary relation that indicates the dependent of an
 employee)

The axioms of terminology EMPLOYEE are:
Emp ⊑ (≥ 1 EmpNo) ⊓ (≤ 1 EmpNo) ⊓ ∀EmpNo.No
(employees have exactly one employee number)
No ⊑ (≤ 1 EmpNo¯) ⊓ ∀EmpNo¯.Emp
(employee number is a key of employee)
Dep ⊑ (≥ 1 DepNo) ⊓ (≤ 1 DepNo) ⊓ ∀DepNo.No
(dependents have exactly one sequential number)
Dep ⊑ (≥ 1 isDepOf) ⊓ (≤ 1 isDepOf)
 ⊓ ∀isDepOf.Emp
(dependents are associated with exactly one employee)
We refer the reader to Calvanese and Giacomo (2003) for a discussion on how to trans-

late UML concepts into DL and to Borgida and Brachman (2003) for a discussion of concep-
tual modeling in DL, in general.

Using Analogy to Promote Conceptual Modeling Reuse

However, we note that the Discriminating Attribute Property is not expressible in any
language of the AL-family defined in Section 3.1 since, intuitively, it is equivalent to a com-
posite key defined by concatenating the employee number and the dependent number Cal-
vanese and Giacomo (2003). Using a first-order language derived from the alphabet E, this
property would be written as follows:

∀x∀y∀w∀z∀n (Dep(x) ∧ Dep(y)
isDepOf(x,z) ∧ isDepOf(y,z)
DepNo(x,n) ∧ DepNo(y,n) ⇒ x=y)

Consider now a second alphabet, B, defined as follows:
Atomic concepts: Book (the set of books)

 Edition (the set of book editions)
 No (the set of positive integers)
Atomic roles: ISBN (assigns an ISBN to a book)
 EdNo (assigns a number to an edition)
 isEdOf (a binary relation that associates an edition to a book)

Then, we may define a analogy mapping μ:E→B such that:
μ(Emp) = Book μ(EmpNo) = ISBN
μ(Dep) = Edition μ(DepNo) = EdNo
μ(No) = No μ(isDepOf) = isEdOf
The extension of EMPLOYEE induced by analogy mapping μ would be the terminology

with the following axioms:
Book ⊑ (≥ 1 ISBN) ⊓ (≤ 1 ISBN) ⊓ ∀ISBN.No
(books have exactly one ISBN)
ISBN ⊑ (≤ 1 ISBN¯) ⊓ ∀ISBN¯.Book
(ISBN is a key of book)
Edition ⊑ (≥ 1 EdNo) ⊓ (≤ 1 EdNo) ⊓ ∀EdNo.No
(editions have exactly one edition number)
Edition ⊑ (≥ 1 isEdOf) ⊓ (≤ 1 isEdOf)
 ⊓ ∀isEdOf.Book
(editions are associated with exactly one book)
∀x∀y∀w∀z∀n (Edition(x) ∧ Edition(y)
 isEdOf(x,z) ∧ isEdOf(y,z)
 EdNo(x,n) ∧ EdNo(y,n) ⇒ x=y)
The point of this example is again that the designer may reuse a fairly sophisticated set of

axioms by just defining an analogy mapping and relying on his intuitive understanding of the
source terminology to generate the target terminology. Indeed, if he has a sufficiently rich
library of terminologies, he may specify a new terminology largely by defining analogy
mappings.

Breitman et al.

3 Analogy in OWL

In this section, we discuss how to specify analogy mappings in the context of the RDF
model and OWL – Web Ontology Language. We first review the RDF model Manola and
Miller (2004), OWL McGuinness and Harmelen 92004) and the TRIPLE language Decker et
al. 92005), which we adopt to complement OWL due to its similarities with first-order lan-
guages. Then, we introduce two new properties, isLike and Source, and show how they can
be used to create OWL ontologies with the help of analogy mappings.

3.1 A Brief Review of the RDF Model, OWL and TRIPLE

We assume that the reader is familiar with the basic XML concepts. In particular, recall
that a resource is anything identified by an URIref and that an XML namespace or a vocabu-
lary is a set of URIrefs. A literal is a character string that represents an XML Schema
datatype value.

An RDF statement (or simply a statement) is a triple (S, P, O), where
S is a URIref, called the subject of the statement
P is a URIref, called the property (or predicate)

of the statement, that denotes a binary relationship is either a URIref or a literal, called the
object of the statement; if O is a literal, then O is also called the value of the property P.

The Web Ontology Language (OWL) describes classes, properties, and relations among
these conceptual objects in a way that facilitates machine interpretability of Web content.
OWL is defined as a vocabulary, just as are RDF and RDF Schema, but it has a richer se-
mantics. Hence, an ontology in OWL is a collection of RDF triples, which uses such vocabu-
lary.

For example, the class and property declarations of the Employee ontology would be
written in OWL as follows:
1. <?xml version=″1.0"?>
2. <!DOCTYPE rdf:RDF [
3. <!ENTITY xsd
 ″http://www.w3.org/2001/XMLSchema#">
4. <!ENTITY owl
 ″http://www.w3.org/2002/07/owl#">]>
5. <rdf:RDF
6. xml:base=″www.metaphor.org/Employee/"
7. xmlns:owl=″http://www.w3.org/2002/07/owl#"
8. xmlns:rdf=
 ″http://www.w3.org/1999/02/22-rdf-syntax-ns#"
9. xmlns:rdfs=
 ″http://www.w3.org/2000/01/rdf-schema#">
10. <owl:Ontology rdf:about=″">
11. <rdfs:label>Employee</rdfs:label>
12. </owl:Ontology>
13. <owl:Class rdf:about=″Emp"/>
14. <owl:Class rdf:about=″Dep"/>
15. <owl:DatatypeProperty rdf:about=″EmpNo">
16. <rdf:type rdf:resource=
 ″&owl;FunctionalProperty"/>
17. <rdf:type rdf:resource=
 ″&owl;InverseFunctionalProperty"/>
18. <rdfs:domain rdf:resource=″Emp"/>
19. <rdfs:range rdf:resource=

Using Analogy to Promote Conceptual Modeling Reuse

 ″&xsd;positiveInteger"/>
20. </owl:DatatypeProperty>
21. <owl:DatatypeProperty rdf:about=″DepNo">
22. <rdf:type rdf:resource=
 ″&owl;FunctionalProperty"/>
23. <rdfs:domain rdf:resource=″Dep"/>
24. <rdfs:range rdf:resource=
 ″&xsd;positiveInteger"/>
25. </owl:DatatypeProperty>
26. <owl:ObjectProperty rdf:about=″isDepOf">
27. <rdf:type rdf:resource=
 ″&owl;FunctionalProperty"/>
28. <rdfs:domain rdf:resource=″Dep"/>
29. <rdfs:range rdf:resource=″Emp"/>
30. </owl:ObjectProperty>
31. </rdf:RDF>

In particular, the value of the rdf:about attribute of owl:Ontology indicates the URIref of

the ontology. If the value is empty, as in line 10, the URIref of the ontology is the base URI
of the document. Line 11 provides a perhaps more readable name for the ontology.

The above XML document defines a set of triples, labeled Employee. However, not all
set of triples T using the OWL vocabulary defines an OWL ontology. For example, T may
have a triple (C, rdfs:domain, D) indicating that D is the domain of C and yet T does not
contain any triple indicating that C is a datatype or object property. Without providing a
detailed definition for the sake of brevity, we say that a set of triples T using the OWL vo-
cabulary is well-formed iff T defines an OWL ontology.

TRIPLE supports namespaces, sets of RDF statements, reification, and rules with syntax
close to that of first-order logic. We refer the reader to Sintek and Decker (2002) and Decker
et al. (2005) for a full description of TRIPLE.

An RDF statement is an expression of the form “S[P→O].”, where S is the subject, P is
the predicate, and O is the object, and denotes an ordinary RDF triple (S,P,O). An RDF
model is a set of RDF statements. A model can be made explicit in TRIPLE, receive a name
(i.e., a resource denoting a model), and be attached to an atom, RDF statement, or molecule
to indicate that the statement holds in that model.

An atomic formula is an atom, an RDF statement, or a molecule. A formula is either an
atomic formula or an expression recursively defined by composing atomic formulas and
formulas with the usual logical connectives (¬, ∧, ∨) and quantifiers (∀, ∃). All variables
must be introduced via the universal or existential quantifier.

A clause is either a fact or a rule. A fact is an atomic formula. A rule is an expression of
the form ∀X C←A, where X is a list of variables, C is a conjunction of atomic formulas, and
A is a formula.

The Employee ontology also includes an additional TRIPLE rule that captures the dis-
criminating property for dependents (if two dependents, X and Y, are dependents of the same
employee Z and they have the same sequential number N, then they are actually the same
dependent, i.e., X=Y):

 FORALL X,Y,Z
 X=Y <- X[seqNo→N] AND Y[seqNo→N] AND
 X[isDepOf→Z] AND Y[isDepOf→Z].

Breitman et al.

3.2 Analogy Mappings in OWL

We first discuss how to define analogy mappings in the context of RDF triples, which
parallels the development of Section 3.2, and then show how to use analogy mappings to
generate OWL documents.

We capture analogy mappings with the help of a vocabulary with just two properties,
md:isLike and md:Source, where md: abbreviates the URIref
http://www.metaphor.org/term/, adopted for the sake of our discussion.

Given two vocabularies, S and T , an analogy mapping from S into T is a set L of RDF
triples of the form (t, md:isLike, s), where s and t are URIrefs of the vocabularies S and T,
respectively, such that, for any two triples (t’, md:isLike, s’) and (t”, md:isLike, s”) in L, we
have that t’=t” iff u’= u”. Note that L defines a one-to-one mapping α:S→T such that
α(s)=t iff (t, md:isLike, s) occurs in L. We say that S is the source vocabulary and T is the
target vocabulary of L.

In what follows, assume that an OWL ontology O is expressed as a set of RDF triples,
and that A(O) denotes the vocabulary of O. Given an OWL ontology S, a vocabulary T and
an analogy mapping L from A(S) into T, we say that an OWL ontology T is created by anal-
ogy with S using T and L iff

(triples analogy) (t1,t2,t3)∈T iff there is (s1,s2,s3)∈S such that, for i∈{1,2,3}, either si is a
term of the OWL vocabulary and ti = si or ti is a term of T and there is a triple of the form
(ti, md:isLike, si)∈L. (Intuitively, each RDF triple s in S generates a triple t in T iff t is the
translation of s to the vocabulary T using the translations defined in L).

 (structural consistency) T is a well-formed OWL ontology.
Note that condition (1) defines how to translate triples in S using the analogy mapping

defined by L, but it leaves out those triples for which L does not define a complete transla-
tion. This may create inconsistencies in T. Thus, condition (2) requires that T indeed be a
well-formed OWL ontology.

We also say that an OWL ontology T is created by metaphorical analogy with S using T
and L iff T is created by analogy with S using using U and M, where

U =T ∪ {s∈A(S) / (∀t∈T)((t, md:isLike, s)∉L)}
M = L ∪ {(s, md:isLike, s) /
 (∀t∈T)((t, md:isLike, s)∉L)}
Since M contains all the necessary triples, by construction, T will be a well-formed OWL

ontology, if S is. Therefore, metaphorical analogies are simpler to construct.
We now show how to accommodate these concepts in RDF/XML with the help of the

following example:
1. <?xml version=″1.0"?>
2. <!DOCTYPE rdf:RDF [
3. <!ENTITY xsd
 ″http://www.w3.org/2001/XMLSchema#">
4. <!ENTITY we
 ″http://www.metaphor.org/weakEntity/">]>
5. <rdf:RDF
6. xml:base=″http://www.books.com/owl-schema/"
7. xmlns:owl=″http://www.w3.org/2002/07/owl#"
8. xmlns:rdf=
 ″http://www.w3.org/1999/02/22-rdf-syntax-ns#"
9. xmlns:rdfs=
 ″http://www.w3.org/2000/01/rdf-schema#"

Using Analogy to Promote Conceptual Modeling Reuse

10. xmlns:mp=″http://www.metaphor.org/term/">
11. <owl:Ontology rdf:about=″">
12. <rdfs:label>Books Catalogue</rdfs:label>
13. </owl:Ontology>
14. <md:Source
 rdf:resource=″www.metaphor.org/weakEntity/"/>
15. <rdf:Description rdf:about=″Book">
16. <md:isLike rdf:resource=″&we;Emp/"/>
17. </rdf:Description>
18. <rdf:Description rdf:about=″Edition">
19. <md:isLike rdf:resource=″&we;Dep/"/>
20. </rdf:Description>
21. <rdf:Description rdf:about=″isEdOf">
22. <md:isLike rdf:resource=″&we;isDepOf/"/>
23. </rdf:Description>
24. <rdf:Description rdf:about=″ISBN">
25. <md:isLike rdf:resource=″&we;EmpNo/"/>
26. </rdf:Description>
27. <rdf:Description rdf:about=″EdNo">
28. <md:isLike rdf:resource=″&we;DepNo/"/>
29. </rdf:Description>
30. </md:Source
31. </rdf:RDF>

Line 12 contains the name of the target ontology, Books Catalogue, in this case. Line
14 indicates that the OWL ontology defined at the URI www.metaphor.org/weakEntity/
is a source ontology for Books Catalogue. Lines 15 to 17 indicate that Book is like Emp of
the Employee ontology, and similarly for lines 18 to 29. Note that the md:isLike declara-
tions are nested inside the md:Source declaration. This syntactical structure permits more
than one source ontology to be specified for the same target ontology, as exemplified at the
end of Section 2.3. The Books Catalogue ontology would then expand to:
1. <?xml version=″1.0"?>
2. <!DOCTYPE rdf:RDF [
3. <!ENTITY xsd
 ″http://www.w3.org/2001/XMLSchema#">
4. <!ENTITY owl
 ″http://www.w3.org/2002/07/owl#">]>
5. <rdf:RDF
6. xml:base=″http://www.books.com/owl-schema/"
7. xmlns:owl=″http://www.w3.org/2002/07/owl#"
8. xmlns:rdf=
 ″http://www.w3.org/1999/02/22-rdf-syntax-ns#"
9. xmlns:rdfs=
 ″http://www.w3.org/2000/01/rdf-schema#">
10. <owl:Ontology rdf:about=″">
11. <rdfs:label>Books Catalogue</rdfs:label>
12. </owl:Ontology>
13. <owl:Class rdf:about=″Book"/>
14. <owl:Class rdf:about=″Edition"/>
15. <owl:DatatypeProperty rdf:about=″ISBN">
16. <rdf:type rdf:resource=
 ″&owl;FunctionalProperty"/>
17. <rdf:type rdf:resource=
 ″&owl;InverseFunctionalProperty"/>
18. <rdfs:domain rdf:resource=″Book"/>
19. <rdfs:range rdf:resource=
 ″&xsd;positiveInteger"/>
20. </owl:DatatypeProperty>

Breitman et al.

21. <owl:DatatypeProperty rdf:about=″EdNo">
22. <rdf:type rdf:resource=
 ″&owl;FunctionalProperty"/>
23. <rdfs:domain rdf:resource=″Edition"/>
24. <rdfs:range rdf:resource=
 ″&xsd;positiveInteger"/>
25. </owl:DatatypeProperty>
26. <owl:ObjectProperty rdf:about=″isEdOf">
27. <rdf:type rdf:resource=
 ″&owl;FunctionalProperty"/>
28. <rdfs:domain rdf:resource=″BookVolume"/>
29. <rdfs:range rdf:resource=″Book"/>
30. </owl:ObjectProperty>
31. </rdf:RDF>

Finally, we state, omitting the details, that the rewriting scheme introduced above gener-
alizes to TRIPLE in the obvious way, so that the definition of a source ontology may also
include rules in TRIPLE.

For example, the Books Catalogue ontology also includes an additional TRIPLE rule that
captures that two book editions must have different edition numbers (or, equivalently, if two
book editions are editions of the same book and they have the same edition number, then
they are actually the same book edition):

 FORALL X,Y,Z
 X=Y <- X[EdNo→N] AND Y[EdNo→N] AND
 X[isEdOf→Z] AND Y[isEdOf→Z].

4.Conclusion

Holyoak and Thagard (1995) introduce analogies as mappings between target domain and
source domain. They argue that “the mapping can be used to enrich understanding of the
target by generating new inferences, and it can lead to formation of a schema based on the
relational structure common to the target and the source. In addition, analogy goes hand in
hand with the formation of schemas – new categories that embrace both the source and the
target, thus changing our understanding of both.” Along these lines, but with a different
purpose, we introduce analogy mappings as a way to generate new schemas from previously
defined ones, considered to be design archetypes.

We argued in favor of a database conceptual schema and Semantic Web ontology design
discipline that explores analogy mappings to reuse the structure and integrity constraints of
conceptual models, stored in a repository. The discipline presupposes that a team of expert
conceptual designers would build a standard repository of source conceptual models, which
less experienced designers would use to create new target conceptual models in other do-
mains. The target models will then borrow the structure and the integrity constraints from the
source models by analogy. The concepts were expressed in the contexts of Description Lo-
gics, the RDF model and OWL to reinforce the basic principles and explore additional ques-
tions, such as the consistency of the target model.

Acknowledgement
This work is partially supported by CNPq under grants 550250/2005-0, 551241/2005-5 and
311794/2006-8.

Using Analogy to Promote Conceptual Modeling Reuse

References

Baader, F.; Nutt, W. (2003) Basic description logics. In: Baader, F.; Calvanese, D.; McGuiness, D.L.;
Nardi, D.; Patel-Schneider, P.F. (Eds) The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, Cambridge, UK.
Barbosa, S.D.J.; Souza, C.S. (2001) “Extending software though metaphors and metonymies”. Kno-
wledge-Based Systems, 14, Elsevier Science, pp. 15-27.
Blackwell, A.F. (2006) “The reification of metaphor as a design tool”. ACM Trans. on Computer-
Human Interaction, Vol. 13, Issue 4 (Dec. 2006), pp. 490-530.
Borgida, A.; Brachman, R.J. (2003) Conceptual Modeling with Description Logics. In: Baader, F.;
Calvanese, D.; McGuiness, D.L.; Nardi, D.; Patel-Schneider, P.F. (Eds) The Description Logic Hand-
book: Theory, Implementation and Applications. Cambridge University Press, Cambridge, UK.
Breitman, K. K., Barbosa, S.D.J., Casanova, M.A., Furtado, A.L., Conceptual Modeling by Analogy
and Metaphor”. In Proc. of the ACM Sixteenth Conference on Information and Knowledge Manage-
ment (CIKM 2007), November 2007, Lisbon (Portugal), to appear.
Calvanese, D.; De Giacomo, G. (2003) “Description Logics for Conceptual Data Modeling in UML”.
In: Proc. 15th European Summer School in Logic Language and Information, August 2003, Vienna
(Austria), pp. 18-29.
Catarci, T.; Costabile, M.F.; Matera, M. (1996) "Which Metaphor for Which Database?". In: Proc.
HCI'95 Conf. on People and Computers. Huddersfield, UK, pp. 151-165.
Chen, P. P-S. (1976) “The entity-relationship model—toward a unified view of data”. ACM Transac-
tions on Database Systems, Vol. 1, Issue 1 (March 1976), p. 9–36.
Decker, S. et al. (2005) TRIPLE - An RDF rule language with context and use cases. In: Proc. W3C
Workshop on Rule Languages for Interoperability, USA, pp. 27–28.
Goguen, J. (1999) “An introduction to algebraic semiotics, with applications to user interface design”.
In: Nehaniv, C (ed.) Computation for Metaphors, Analogy and Agents. LNAI, Vol. 1562. Springer, pp.
242-291.
Holyoak, K.J.; Thagard, P. (1995) Mental Leaps – Analogy in Creative Thought. The MIT Press, Cam-
bridge, MA, USA.
Lakoff, G.; Johnson, M. (1980) Metaphors We Live By. The University of Chicago Press, Chicago,
1980.
Lakoff, G.; Espenson, J.; Schwartz, A. (1991) Master metaphor list. Second draft copy. University of
California Berkeley. Available at: http://cogsci.berkeley.edu/lakoff/
Lippert, M.; Schmolitzky, A.; Züllighoven, H. (2003) “Metaphor Design Spaces”. In: Proc. 4th Int.
Conf. Extreme Programming and Agile Processes in Software Engineering, XP 2003. Genova, Italy,
May 25-29, 2003.
Manola, F.; Miller, E. (Eds) (2004) RDF Primer. W3C Recommendation, 10 February 2004. Available
at: http://www.w3.org/TR/rdf-primer/.
McGuinness, D.L.; Harmelen, F.V. (Eds) (2004) OWL Web Ontology Language Overview. W3C
Recommendation, 10 February 2004. Latest version available at: http://www.w3.org/TR/owl-features/
Winston, P.H. (1980) “Learning and reasoning by analogy”. Communications of the ACM, 23, pp. 689-
703.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (Accommodates Digital Workflow at Maple-Vail as per their website \(http://www.maple-vail.com/prepress/DistillingInstructions.html\).)
 >>
>> setdistillerparams
<<
 /HWResolution [2540 2540]
 /PageSize [612.000 792.000]
>> setpagedevice

