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Abstract. This paper describes a method for combining “off-the-sh8AT
and constraint solvers for building an efficiédatisfiability Modulo Theories
(SMT) solver for a wide range of theories. Our method folldive abstrac-
tion/refinement approach to simplify the implementatioowdtom SMT solvers.
The expected performance penaltyrmt using an interweaved combination of
SAT and theory solvers is reduced fgneralisinga Boolean solution of an
SMT problem first via assigningon’t careto as many variables as possible. We
then use the generalised solution to determine a thereblesmanstraint set
to be handed over to the constraint solver for a backgrouedrh We show
that for many benchmarks and real-world problems, thisnaigtition results in
considerably smaller and less complex constraint prohlems

The presented approach is particularly useful for assemmhlipractically viable
SMT solver quickly, when neither a suitable SMT solver noogesponding in-
cremental theory solver is available. We have implementegdpproach in the
ABsoOLVER framework and applied the resulting solver successfullgridn-
dustrial case-study: The verification problems arisingerifying an electronic
car steering control system impose non-linear arithmetitstraints, which do
not fall into the domain of any other available solver.

1 Introduction

Satisfiability modulo theorie§SMT) is the problem of deciding whether a formula in
quantifier-free first-order logic is satisfiable with respeca givenbackgroundtheory. For
example, one is interested whether the formtta (i > 0) A (=(2:+ 5 < 10)V (i +j < 5))
is satisfiable in the theory of integers. In recent yeargarsh on SMT has attracted a lot of
attention. SMT solvers for dedicated theories have beerldped, such as Yices (Rushby,
2006b), MathSAT (Bozzano et al., 2005), or CVC (Barrett ardein, 2004). The growing
efficiency of these solvers in their respective domains teegised in the annual SMT compe-
tition (ht t p: / / www. snt conp. or g).

Amongst others, SMT has its applications in the area of modetking and abstraction
(Lahiri et al., 2006), (symbolic) test case generation (Raand Claessen, 2006), or in the
verification of hybrid control systems (Bauer et al., 200tsRby, 2006a), to name just a
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few common examples. Especially for the latter, howevee, isroften faced with the task of
having to solve problems with respect to theories that atéym) supported by existing SMT
solvers, althougltonstraint solverdor the required theories are available. These powerful
constraint solvers have been developed for dedicatedifisesuch as general linear arithmetic
over integer and real numbers (Wé&chter and Biegler, 2005)ohtrast to SMT solvers, such
constraint solvers only accept a conjunction rather thaarbitrary Boolean combination of
atoms.

In this paper, we propose a method for combining off-thdf&wlean satisfiability (SAT)
and constraint solvers without altering them to assembl& Stivers for a wide range of dif-
ferent theories with a minimal engineering overhead, y¢h &ireasonable practical perfor-
mance. The existing approaches to solve SMT problems canbmbivided into three main
categories. In théranslation approach{Sheini and Sakallah, 2006), given an SMT instance,
the entire problem is encoded as an equi-satisfiable pureif®Adnce such that a solution to
the SAT problem translates into a solution of the originalSikistance. For example, if the
above mentioned is solved over the 16 bit integers, then it is straightfochtarformulatep’s
constraints in terms of bits yielding a purely proposititleamula. With the advent of highly
efficient SAT solvers (cf. Een and Sdrensson (2003); Moskewt al. (2001); Prasad et al.
(2005)) this approach turned out quite successful—at feasertain background theories, see
for example Jones and Dill (1994); Rodeh and Strichman (RG@6wever, such a translation
involves a non-obvious interplay between the SAT solvertae@&ncoding, where the structure
of the underlying problem is difficult to reflect in the encogli In theabstraction/refinement
approach(Sheini and Sakallah, 2005), one represents each occuheogy constraint with a
Boolean variable. By substituting these Boolean variafdesheir respective constraints, an
abstract SAT problem is produced and solved first. This detess the set of constraints to be
satisfied. If such a Booleampresentative variablbas been set to true, then the corresponding
constraint is selected, and respectively, if a Booleanesgtative variable has been assigned
false, then the negation of the corresponding constraedded to the constraint set. Finally,
this constraint set is passed on to a dedicated solver fdrableground theory of the problem.
If the solver finds a solution, then the original SMT probleastbeen solved, and a solution
has been determined. On the other hand, if the theory sdalilgrthen the Boolean abstraction
is refined, a new solution for the abstract SAT instance ismded and the process continues.
In the online solving approackiGanzinger et al., 2004), both the abstract Boolean problem
and the theory constraints are solved simultaneouslyvileenever a Boolean variable which
represents a constraint is assigned, the correspondirsgraort or its negation is added to the
set of constraints to be satisfied. This set is checked fasfisduility immediately and conse-
quently conflicts can be detected at an early stage of thelspavcess and can be pruned from
the remaining search space. This approach allows for Imgjltlighly efficient SMT solvers
and is followed by most modern tools. However, it requirdglatinteraction between the SAT
solver and the constraint solver: the SAT solver must callibnstraint solver whenever a new
constraint is added and therefore, the solver should betalfiandle this growing constraint
set efficiently. Furthermore, when the SAT solver backtsathke constraint solver must follow
the backtracking step, and remove the corresponding @ntstfrom the incrementally grow-
ing set. Such a tight interaction complicates the integredif existing constraint solvers since
they need an interface supporting backtracking, similéinémne described by Ganzinger et al.
(2004). Thus, when building custom SMT solvers using of-ghelf constraint solvers that do
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not support backtracking, this approach is often imprattiespecially in presence of limited
development resources.

Foremost for this reason, our framework, ABLVER (Bauer et al., 2007), which allows
the integration of efficient SAT and constraint solvers tddsup custom SMT solvers, fol-
lows the abstraction/refinement approach. As this methodaglto be inferior to the online
solving approach, we employ a simple yet surprisingly effizas optimisation to the abstrac-
tion/refinement scheme: once a SAT solver has determinelliiosoto the Boolean abstrac-
tion of an SMT problem, we firsgeneralisethis solution, before generating and solving the
underlying constraint problem. This yields fewer and seraflonstraint problems than the
traditional approach. More specifically, we use a simpleedyealgorithm to find a minimal
assignment (but not necessarily of minimal weight) which satisfies the Boolean abstrac-
tion, i. e., each completion of the assignment must stilsgathe Boolean abstraction. Having
found such a partial assignment, each variable is assigtiest &rue, false, odon’t care For
each representative variable being assigned true, we adcbtinesponding constraint to the
constraint set. Respectively, for each representatiaiarbeing assigned false, we add the
negation of the constraint. All other representative \[dés, i. ., all variables being assigned
don't care are ignored. Thus, the smaller the assignment, the sntléleronstraint set to be
handed to the corresponding constraint solver. Furtheenibsuch a smaller assignment is
found to be conflicting by the theory solvers, a set of posdimolean solutions is invalidated
by a single assignment. The size of this set is exponenttheimumber oflon’t cares.

Our generalisation of a SAT solver’s solution is based onetfieient computation of a
minimal solution of a given conjunctive normal form (CNF) formulauiCapproach is thus
similar in spirit to the so-called MiSAT problem and its variations (Belov and Stachniak,
2005; Delgrande and Gupta, 1996; Kirousis and Kolaitis,20@&hich, however, are known
to be NP-complete (Delgrande and Gupta, 1996). These caityptheoretic results imply
that we cannot hope to find any generally efficient algoritmu therefore, we need to resort
to heuristic approaches which (as our benchmarks in thismpiaglicate) work well in most
practically relevant cases.

We have implemented the suggested optimisation within @&s®&LVER framework. Even
though we have to admit that our approach does not reach tfeepance of other participants
of the SMT-COMP in their respective domains, our solver teenisuccessfully applied to an
industrial case-study involving non-linear constraintsak are not supported by other solvers
(see Sec. 4). Using ABOLVER, we were able to verify properties of a car’s electronicitee
control system whose behaviour was given by a MATLAB/Simkiimodel. Such models
typically capture the dynamics of the closed control loagolving the actual system and part
of its environment. This loop can then often, as it was in @seg; only be expressed in terms
of a non-linear equation system.

2 Abstraction and refinement for SMT

In this section, we develop the framework in which we descabr approach. Since we are
faced with formulas which involve variables ranging ovdfatent domains, we use tgped
setting.

Domains, variables, assignments. Let ¥ be a finite set otypesandD = (D,),ex) @
family of respectivedomains Furthermore, leV = (V,),cx) be a family of finite sets of
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variablesof the respective type. Abusing notation, we also denot®lige unionlJ, ., D,
and byV the unionJ,, .y, V,,. We also call the elements &f values

B denotes th®ooleantype as well as the domalh = {, ff}. We always assuni € &
and we mostly consider the redtsand integer& as additional types.

To represent partial assignments with total mappings, Wwednce? to denote thelon't
care value and leD’ = {?} & (D, ),¢x) be the family of domains enriched witton't care

An assignmenis a mappingr : V — D’ assigning to all variables either a value of the
corresponding domain ¢. We call - completeiff 7(v) # ? for all v € V. To establish
an information preorder we set? < d for all d € D, ordering? below all domain values
and leaving these values unordered. kedenote the reflexive closure ef. The information
preorder extends to assignmentsrby 7’ iffforall v € V' 7(v) < 7/(v). Thus,r is smaller
thant’ w.r.t. <, if reassigning’ to a number of variables if results inr.

The weight|7| of an assignment is the number of values different frofy i.e., |7| =
[{r(v) # ? | v € V}|. Dually, we define théreedomof , denoted by7|-, as the number of
don't cares in its rangel7|, = |[{7(v) =7 | v € V}|.

The set of assignmentgeneratedy 7, denoted by(r), is given by a set of assignments
7 with 7 < 7/. Similarly, the set of complete assignments generated lofenoted by(7), is
given by the set of complete assignmeritsvith 7 < 7/.

Remark 1. The number of complete assignments generated by an assignmexponential
in its freedom|(7)| = 2I7I7,

Formulas. Let F = (F,),ex be a family of ranked function symbols al= (P, )sex
a family of ranked predicate symbols. The set of (typedinsis inductively defined: First,
every variable o)), is a term of typer, and second, if € F, of rankn is a function symbol

of typeo anda,, ..., a, are terms of type, thenf (a4, ..., a,) is aterm of typer.
The set of (typedatomsis defined as follows: Ip € P, of rankn is a predicate symbol of
typeo andas,. .., a, are terms of type, thenp(as, ..., a,) is an atom of typer. Note that

the above definition does not allow terms and atoms whichhevtsvo or more types. Each
such atom representsanstraintformulated in the background theory of the respective type.
A literal is a possibly negated atomgchuseis a disjunction of literals, and a formula in
conjunctive normal forr{CNF) is a conjunction of clauses. Thus, a formuglan CNF, as
considered subsequently, has the faree A,V c ;. (4)pij (a1, ..., an,,).
Finally, for a formulag, we useV, (¢) to denote the variables of typeoccurring ing.

Example 1. As a running example, we use the following formpileonsisting of four clauses
over the variabled’;(¢) = {i,4, k,1} andVg(¢) = {x,y}:

d={(>0)VyIn{=(2i+j <10)V(i+j < 5)}A{zV=(j > 0)}A{(k+(4d—k)+2l > T7)}

Solutions. A complete solutionf ¢ is a complete assignment to the variable¥jrsuch that
¢ evaluates ta in the usual sense. For example, we can defias an assignment far (as
shown in Ex. 1) withr (i) = 3, 7(j) = 1, 7(k) = 0, 7(I) = 2, 7(x) = &, andr(y) = ff. This
assignmensatisfiesall clauses and assigns values other tham all variables. It is therefore
called acomplete solutionf ¢. For a given formula, the SMT problenis to decide whether
there is a complete solution far.
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In general, an assignmentis asolutionof ¢ iff every complete assignment with 7 < 7/
(i.e. everyr’ € (7)) is a solution ofp. For example, an assignmentvith (i) = 3, 7(j) = 1,
(k) =7, 7() = 2, 7(z) = #, andr(y) = ff is also a solution for formula of Ex. 1 since
the value ofk can be set arbitrarily.

The assignment is called aminimal solutionff 7 is a solution ofp and minimal w. r. t<:
Thus, if any further variable irr is assigned, then there would be @ with = < 7/ which
does not satisfyp. A solutionr is a solution ofminimal weightff it is a solution and for all
solutionsr’ we havelr| < |7/].

For example, the- above is not minimal, since’ with 7/ < 7 by setting7’(i) = 3,
7/(j) = 1, andr’(I) = 2 and assigning to all remaining variables is also a solutiongfr’ is
not only a minimal but also a solution of minimal weight tbsince every solution fop must
at least assign values tpj, andi to satisfy the second and the fourth clause, respectively.

2.1 Deciding SMT by abstraction and concretisation

We integrate a Boolean SAT solver as well as constraint selfig¥ the occurring back-
ground theories into a combined SMT solver. Thereby, weireghe constraint solvers to
decide the satisfiability of conjunctions of possibly negltonstraints. Thus, our goal is to re-
duce the SMT problem to Boolean SAT problems and constralairgy problems. We follow
the well-known idea of solving first a Boolean abstractiomofielding a constraint problem
for each type at hand.

Boolean abstraction. Given a formulag in CNF, its Boolean abstractiorabst(¢) is de-
fined as follows: Every atom;;(as,...,an,;) is replaced by a newepresentativeBoolean
variablep;; which does not occur otherwise i Thus, := abst(¢) is of the formy =
Nier Ve, (m)pi;. The representative Boolean variables of a Boolean abistredist(¢) are
denoted by the satff(abst(¢)) C V(abst(¢)). Since all representative variables do not occur
otherwise inp, we haveVf (abst(¢)) N V(¢) = 0.

Example 2. The Boolean abstraction @f shown in Ex. 1 is given asbst(¢) = {v1 V y} A
{=we Vus} A {z V —vs} A {vs} with VE(abst(¢)) = {v1,...,v5}. Here, we use; as a
representative Boolean variable for the at¢i> 0), andv, as representative2i + j < 10),
and so forth.

Abstract solutions. Let ¢ be a formula and) := abst(¢) its Boolean abstraction. Every
complete assignment to the variablegafields a truth value for the atoms ¢f As the atoms
are mapped to Boolean variableg/inthis yields a complete assignment for the variableg.of
More formally, every assignmentto the variables i) induces an assignment:= abst(7)

to the Boolean variables in by v(p;;) := (pij(ai, ..., an,;))[7] where(pi;(as, ..., an,;))[7]
denotes the truth value of the atgy(a, . . . , a,,; ) under assignment(if somea; is assigned
7, thenp;; is assigned as well). We have immediately:

Remark 2. Let T be a (complete) solution af. Thenabst(7) is a (complete) solution of

abst(¢).

Concretisation. Let conc(¢,v) = {7 : V(¢) — D’ | abst(r) = v} be the set of all
concretisation®f v with respect tap. As a consequence of Remark 2, the satisfiability of
¢ can be checked by first searching for a complete solutio abst(¢) and then checking
whether there is & € conc(¢, v) which satisfiesp. While the first problem is an ordinary
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Boolean SAT problem, the second problem is a constraintlpnabi.e., one has to check
vyhethercqnstr(¢, v) = Nooiy)=tt pz_-j(al, o aniy) N Nopi)=f ﬁpij(al,: or a."f‘j) is Sf'altis-
fiable. This suggests the abstraction/refinement appraaahtcking satisfiability o, i. e.,

to search for an abstract complete solutiofor abst(¢) and to then search for a complete
solution forconstr(¢, v). We summarise this procedure in the following lemma:

Lemma 1. ¢ is satisfiable iff there is a complete solutionof abst(¢) and constr(¢,v) is
satisfiable.

Note that the application of this lemma requires each indat@nstraint solver to be able
to handle negated atoms.

2.2 Generalisation

We adapt the approach in order to reduce the number of catiset@onstraint solvers
and such that the individually processed constraint sgtdva fewer constraints—ultimately
yielding a much better overall performance.

The simple yet efficacious idea is g@neralisea given solution obtained by a SAT solver
before considering the constraint problem. Given a competutiony for abst(¢), we will
obtain a minimal solution’ < v and replace with +/ in all subsequent steps.

For a not necessarily complete solutignthe constraint sebnstr(¢, ') is exactly defined
as for a complete solution. Note, however, all constrajngis, . . ., a,,;) with v/ (p;;) = 7 are
not part ofconstr(¢, v'). In other wordsconstr(¢, v') has|v/|- less atoms thanonstr(¢, v/)
for a complete solution. But still, the statement of Lemma 1 holds for incompleteugohs:

Lemma 2. ¢ is satisfiable iff there is a (possibly incomplete) solutignof abst(¢) and
constr(¢, V') is satisfiable.

Proof. Consider a solution’ of constr(¢,v’). If 7/ is not complete, take an arbitrary complete

solutionT with 7 < 7. Then we haveép;; (a1, . .., an,;))[T] = V'(pi;) whenever/ (p;;) # ?,
i.e.,, v/ < abst(r). Sincer’ satisfiesabst(¢), abst(r) satisfiesabst(¢) as well and thus
satisfiesp. The other direction is immediate by Lemma 1. O

The next lemma shows that we can resort to incomplete sokitmprune the search space:

Lemma 3. Letr andv’ be solutions ofibst(¢) with v’ < v. Then satisfiability ofonstr(¢, v/)
implies satisfiability otonstr(¢, v').

Proof. Sinceconstr(¢, ') contains a subset of the constraintsofistr(¢, ), every assign-
mentr which satisfiegonstr(¢, v) must satisfyconstr(¢, v') as well. O

Therefore ifv’ is a solution obbst(¢) andconstr(¢, ') is notsatisfiable, thenonstr(¢, v)
is not satisfiable for all with / < v. This gives rise to an efficient procedure for checking
the satisfiability of a formula:

Lemma 4. Letv’ be a set of solutions whose elements generate all completgoss of a
formulag, i.e.,J, o (V') = {v | v is a complete solution afbst(¢) }. Theng is satisfiable
iff there exists @’ € v’ such thatconstr(¢, ') is satisfiable.
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Note the following important facts on the approach sketdealve: First, every’ gener-
ates an exponential number of solutions with respect taésdom|v’|; (Rem. 1). Further-
more, the number of atoms to check is reduced by the freeédfmof /. Both reasons give
an intuitive explanation for the benefit of our approach erogily confirmed in Sec. 4.

This minimisation approach suggests to find sapémalset’ of solutions to generate all
complete ones. However, as even computing a single solotimmimum weight from a given
one isNP-complete and enumerating all possible solutior$¥-complete, it is infeasible to
construct such an optimal set (Delgrande and Gupta, 1996).

Thus, instead of building a set of minimal solutions at the beginning, vmseinimiseeach
solution as generated by the SAT solver according to simguleistics. If the obtained minimal
solution does not yield a concrete solution, we use the SAlesto produce a new solution
outside the already visited search space. In the next seeti® introduce the corresponding
algorithm, and we discuss its efficiency in Sec. 4.

3 Solving algorithm and minimisation

We now present ABOLVER, which implements the abstraction/refinement appraowittin
generalisationfollowing the ideas that were laid out in the previous s@tti

3.1 Main loop

ABSOLVERS main procedureolve for deciding an SMT problem is shown in Alg. 1.The
procedure takes a formulaas input and returns a solutioniff ¢ is satisfiable. To do so,
in line 2, a Boolean abstractiapt is computed before entering the main loop. Subsequently,
solve adds further clauses i whenever it discovers unsatisfiable conjunctions of (fbgsi
negated) constraints. In the main loop, we first computeuisolv to the Boolean abstraction
¢’ (line 4). If no such solution exists (line 5), then there &xi®o solution to the original SMT
instancep and the procedure returgfg (line 6).

Otherwise, following the ideas of Section 2.2, the Boolealutfon v is generalised by
reducing the weighiv| of v (line 8). This minimisation algorithm§inimisation) is discussed
in Section 3.2. Using the now generalised solutic the Boolean abstraction, we construct
the corresponding constraiadnstr(¢, v) and use a constraint solver to search for a concrete
solutionr (line 9). If a solutionr exists (line 10), them is indeed a solution to the original
problem¢ and accordingly, the algorithm returnss the solution.

If no suchr exists, an unsatisfiable subset of the literalswfstr(¢, v/) is constructed by
conflicts and added as a conflict clausegtq(line 13). In our implementatiorpnflicts returns
those literals which are reported to be mutually inconsidhy the employed constraint solver.

If the constraint solver does not return such an unsatisfiadrle conflicts() returns all literals
of constr(¢, v) and consequently, all of them are added into the new conféiase.

3.2 Minimisation

Let us now turn our attention to the generalisation algarithinimisation shown in Alg. 2.
It starts with a complete Boolean assignmerds returned by the functioboolean_solver,
which we have to minimise.minimisation takes a Boolean formulé’ and an assignment
v which mustsatisfy ¢’ initially. The procedure maintains a set of variabléswvhich are
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ALG. 1 ABSOLVERS solving algorithm. ALG. 2 Iterative minimisation algorithm.
1: proc solve(¢) 1: proc minimisationg’, v)
2: ¢ = abst(9) 22 V:=Ve(¢)
3. while # do 3. while # do
4 v := boolean_solver(¢’) 4 forall clause<’; of ¢’ do
5: if v =fail then 5: L := satisfying_literals(C;, v)
6: return ff 6: if L={v}orL={-w}then
7: end if 7: ¢’ := remove_clause(C;, ¢')
8 v := minimisation(¢’, v) 8: V' := remove_variable(v, V')
9 T := constraint_solver(constr(¢,v)) 9 end if
10: end for
10: if 7 #£ fail then 11; if V =0 then
11 return 12 return v
12: end if 13 end if
13: ¢ := ¢ N —(conflicts(7)) 14: v := select_variable(V)
14:  end while 15: assignvinvto?
16: V := remove_variable(v, V')

17:  end while

subsequently considered for being assigheit first, V' is initialised to the set of all variables
Vi (¢') of ¢’ (line 2).

Then, a loop is entered in which in each iteration at leastvamiable is removed fror.
This loop has two parts: In lines 4-10, the clauses which ahg satisfied by a single literal
(line 6) are removed (line 7) fromf and the corresponding variahlérom V' (line 8): As when
a constraint is satisfied by a single literal, the correspundariable cannot be assignedif
no candidate variable remains¥n(line 11), the algorithm returns the resulting assignment
Otherwise, all variables i’ can be selected to be assigriedThus, the algorithm chooses
a variablev € V with select_variable (line 14) according to heuristics discussed below and
reassigng to v (line 15). Thisv is then removed fron (line 16)—and a new iteration starts.
Note that the number of iterations is bounded by the numbeadbles.

Selection heuristics. Presumably the choice of the variable to be assigh@mhplemented

by select_variable) plays a crucial role in the efficiency of the overall deaisiorocedure.
Therefore, we experimented with the following three diierheuristicsinput-order rule:In

the simplest form, variables are chosen according to thetstre of the input formulaPurity-
frequency rule:Pure literals are those which occur in a given formula eitirdy negative, or
only positive. In this caseglect variable always prefers a pure variable over a non-pure one.
Representative ruleApplying this heuristic, variables that represent constseof the back-
ground theory are preferably assignedObserve thaminimisation runs with the proposed
selection heuristics in polynomial time with respect to $hee of¢.

It is easy to construct test cases which strongly discriteifieetween these variants, as
well as test cases where the heuristics do not apply. Inbeghsenough, in the benchmarks
described in the next section, which are taken from the SNBI-the heuristics performed
roughly equal. The measured differences in performance wely on a marginal scale, indi-
cating that either way good (or, bad) candidates for elingmavere found.
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Note that the minimisation algorithm is easily integratetbiother abstraction/refinement
solvers as a subsequent saiffer the Boolean part of an SMT problem has been solved by
an arbitrary SAT solver, as shown in Alg. 1.Moreover, it wbldle possible (and, arguably,
sometimes even more efficient) to modify the internals of & SAlver in order to obtain
a generalisation directly. However, this requires moreettgyment effort and ties the SMT
solver to a particular version of a particular tool. Additadly, most of today's competitive
SAT solvers make use of highly integrated algorithms, shahrnaking modifications to them,
even small ones, becomes a non-trivial and error-prone asksequently, having a separate
generalisation algorithm gives us the flexibility we neet] aases implementation.

4 Implementation and benchmarks

This section briefly discusses implementation details o6ABvER and gives three kinds
of benchmarks showing the efficiency of our approach. Rivetshow the speed-up of using
the generalisation approach by comparinggRVER without and with generalisation on ex-
isting benchmarks. Second, we compares®BVER with third-party SMT solvers that follow
both an iterative approach and an abstraction/refinem@mbaph, showing that our approach
yields an inferior but still estimable solver. Most inteiagly, we report that we indeed easily
obtained an SMT solver for non-linear arithmetic constiathat helped us to verify a car’s
electronic steering control system.

ABsoOLVERas originally introduced by Bauer et al. (2007), is a C++ femrark that, once
combined with the appropriate solvers, can be either usagtsd-alone tool, or integrated in
terms of a system library, e. g., to extend other constizémdling systems. In the discussion
that follows, we refer to ABoLvVERas the framework in its original form, and ABLVERDC
as the framework that has now been extended with the iteratinimisation algorithm de-
scribed above. Currently, ABOLVER interfaces with LSAT (Bauer, 2005), grasp (Marques-
Silva and Sakallah, 1996) and (z)Chaff (Moskewicz et alQ0although in this paper, only
the latter was used to run benchmarks. The concretisatibaridled by specialised solvers
offered by the COIN-OR library (Lougee-Heimer, 2003). Bafly, the COIN-OR library is a
collection of dedicated, and more or less independentlgldged constraint solvers, covering,
e.g., linear arithmetic, or non-linear arithmetic, eacthvai different solver.

An input problem to ABOLVER (and, therefore, to ABoLVERDC) then consists of a
standard DIMACS (DIMACS, 1993) format SAT problem, where thackground constraints
are expressed in a custom language, encoded in the DIMACS8ieais. This way, the abstract
part of an ABSOLVER problem is already understood by any standard SAT solvendiurally
“wrapper” code has to be written for processing the solvetarn set correctly. Part of the
solver “wrapper” is also the iterative minimisation algbm for the SAT solver, i.e., each
assignment produced by the SAT solver is first generalisefyré the concrete solution is
determined. Moreover, the “wrapper” is also responsibteef@luating the return values of
the constraint solver, and for adding the negated abstohati@an back to the input clause, if
necessary. This design facilitates a loose integratiomefinndividual solver. However, we
expect some constant penalty on all benchmarks, becausaithpgper’ has to do type or
character marshalling of input and return values to sojvether than accessing a solver’s
data structures directly in terms of, say, pointers to mertamations.

The benchmarks presented in the following sections have erecuted using a timeout
of two hours, and a memory limit of 1.2 GB on a 3.2 GHz Intel Xegystem, equipped with
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2 GB of RAM. All test cases are taken from the QF_LIA suite tisapart of the SMT-LIB
benchmarks (Ranise and Tinelli, 2006).

10000 T T 7
4.1 ABSOLVER vs. ABSOLVERDC o A

A direct comparison between ASLVER and 1000 f . ]
ABsSOLVERDC is shown in Fig. 1. Each test_ + + ﬁ
case is represented by a cross in the diagrafh,'® [ T F 7

SOLVERDC, and the y-coordinate the runtime of 10
ABSOLVER. Consequently, when A8LVERDC 1
outperforms ABOLVER, the corresponding cross is g

located within the upper left area of the diagram. o1 - ! - -
Both, the x- and y-axis show the runtime in seconds, %! 1 10 100 1000 10000
based on a logarithmic scale. Marks at the upp - ABsolverbe ,

and rightmost end of the diagram denote timeou 5¢: 1: With and withoutlon't cares.

of ABsOLVER and ABSOLVERDC, respectively. Fig. 1 indicates that, in all test caseB; A
SOLVERDC is at least as efficient as A®LVER, and even outperforms A®LVERiIn roughly
one quarter of the test cases by more than an order of magnifibse runs, in turn, exhibit
speed ups of more than three orders of magnitude. Note the than 20 test cases resulted
in timeouts of ABSOLVER, whereas ABOLVERDC was still able to solve these efficiently.

£
where the x-coordinate reflects the runtime of ABZ _§ ﬁg%
+ 7

4.2 Comparison with other solvers

In Fig. 2, ABsOLVERDC is compared to CVC 3, MathSAT, and Yices. Let us use the
same type of diagram as for the comparison betwees&BERDC and ABSOLVER above,
i.e., for each test run, a cross is added in a square suchhiat tand y-coordinate reflect
the runtime of ABSOLVERDC and the other solver on a logarithmic scale, respectiviébt
surprisingly, other solvers which employ an iterative aygah, still perform better in these
test runs than ABoLvERDC does. However, ABOLVERDC shows a comparatively stable
and reliable performance compared to these solvers. Indaetto the optimisations in place,
ABSOLVERDC is able to solve most test runs in additional time whichn$/@reater by a
constant factor. As shown in Fig. 2a, ABLVERDC is comparable to CVC 3, since most
test runs are clustered around the diagonal line, and sioitetbols are able to solve some
test cases which cannot be solved by the respective compeltg. 2b, and 2¢ show that
ABSsOLVERDC is clearly slower than MathSAT and Yices. However, 60%Ilbbanchmarks

10000 T 10000 10000
1000 F T 1000 1000 F )
100 100 100 F +
<L
. .
™ 10 < 10 10 > .
Q 2 8 +#§F s
o 1 8 1 > 1B 7 +
= P R
0.1 0.1 01F S+
P : ++¢*ﬁ$ 4
0.01 | - i b 0.01 0.01 | 4 +
- R e e
0.001 = ‘ ‘ ‘ 0.001 ‘ ‘ : ‘ 0.001 = ‘ ‘ ‘
01 1 10 100 1000 10000 01 1 10 100 1000 10000 01 1 10 100 1000 10000
ABsolverDC ABsolverDC ABsolverDC
(a) ABsoOLVERVsS. CVC 3. (b) ABSOLVERVS. MathSAT. (c) ABSOLVERVS. Yices.

FIG. 2: A detailed comparison.
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are solved by ABoLvERDC within a runtime which is only larger by a constant factbinis

is indicated by the diagonal lines, as due to the logarithsnae of the diagrams a constant
factor translates to diagonal corridors. The corridorsesent factors of 20, and 100 in Fig. 2a-
c, respectively. Note that part of this overhead is due tot¢héfile-based interface to the
underlying solver.

4.3 Industrial case-study with non-linear arithmetic congraints

The ABsoLVER framework was originally developed to handle general mixgthmetic
and Boolean constraints as arising in the verification of MAB/Simulink models (Bauer
et al., 2007). To the best of our knowledge, no pre-existowst supported the occurring
non-linear constraints imposed by these models. Cons#guesm integrated a specialised
non-linear constraint solver, as provided by the COIN-Qirdliy, into ABSOLVER.

We have employed successfully ABLVERin verifying a number of properties of a car's
steering control system. The continuous dynamics of théraler and its environment had
been modelled using MATLAB/Simulink, where the environmeansisted of non-linear func-
tions modelling the physical behaviour of the car. An auttedaonversion (using a custom
tool-chain) resulted in 976 CNF-clauses, and 24 (non-gligxpressions representing the con-
straints. Currently, ABOLVER in its original version is able to solve the imposed constrai
problem in 17 seconds. On the other hand, our optimised s8lBesoLVERDC, was able to
solve the same problem in only 9 seconds, giving a speed-upughly 50%. In both cases
the employed theory solvers were COIN (Lougee-Heimer, 20@8 the linear part), zChaff
(Moskewicz et al., 2001) (for the Boolean part), and IPOPRWter and Biegler, 2005) (for
the non-linear part).

5 Conclusions

We have presented a simple yet surprisingly efficaciousrogdition to the abstraction/
refinement approach in SMT solving. Starting with our #@ vVER framework as originally
presented by Bauer et al. (2007), we were able to improveehfernance of the solver sub-
stantially bygeneralisinga SAT solver’s solution, before generating and solving theeuly-
ing constraint problem. This yields fewer and smaller caist problems than the traditional
approach. Our experiments confirm that the optimisationravgs the traditional abstrac-
tion/refinement approach and pushes our framework in aipadigtapplicable range.

In many domains, specialised SMT solvers exist andsAB/ER cannot compete with
these solvers. However, to build an SMT solver with our frawmi, it is sufficient to integrate
a SAT solver and non-incremental theory solvassblack boxesTherefore, ABSOLVER pro-
vides a useful trade-off point between research and dewedapeffort on the one hand side,
and the domain of solvable problems on the other: With a mininengineering effort, we
were able to build a solver for non-linear arithmetic SMTlgeons and to successfully apply
this solver in verifying a car’s electronic steering cohsgstem—no other solver was able
to process these non-linear constraints before. As suclframmework somewhat closes the
gap between more advanced SMT solvers being developeddarads and currently arising
industrial problems which are often based upon hithertappsrted theories.
Acknowledgements. Thanks to Jinbo Huang, NICTA, for comments on an earlierivarsf
this paper.
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