
Enhancing Personal File Retrieval in Semantic File Systems
with Tag-Based Context

Hung Ba Ngo
1,2

, Frédérique Silber-Chaussumier
1
, Christian Bac

1

Institut National des Télécommunications-France
1
, Cantho University-Vietnam

2

{hung.ngo_ba, frederique.silber-chaussumier, christian.bac}@int-edu.eu

Abstract. Recently, tagging systems are widely used on the Internet. On

desktops, tags are also supported by some semantic file systems and desktop

search tools. In this paper, we focus on personal tag organization to enhance

personal file retrieval. Our approach is based on the notion of context. A

context is a set of tags assigned to a file by a user. Based on tag popularity and

relationships between tags, our proposed algorithm creates a hierarchy of

contexts on which a user can navigate to retrieve files in an effective manner.

1 Introduction

Nowadays, tagging systems such as (Delicious) are widely used on the Internet. These

tagging systems enable users to add keywords (or tags) to Internet resources without relying

on a controlled vocabulary. On the desktop, tags are also supported by some semantic file

systems and desktop search tools. Users in LFS (Padioleau, 2005), for example, can

manually assign tags to a Jpeg file to annotate the names of persons in that photo for later

retrieval. With tags, users are flexible in describing their opinions and interests on files (or

resources). As a result, users’ personal files are classified per tags and each user has a

personal vocabulary of tags. Users then can retrieve files using logical expressions of tags.

By default, tagging systems are more suitable for file retrieval using querying than browsing.

However, experiments in personal information management (Barreau et al., 1995), and

(Khoo et al., 2007) show that most users prefer browsing than querying (logical search) as

retrieving their files from a desktop. That is the reason why recently tagging systems such as

Delicious on web or LFS (Padioleau, 2005) and TagFS (Bloehdorn et al., 2006) on desktop

concentrate on tag organization to help users to browse tags for file retrieval. We continue to

enhance personal file retrieval in tagging systems with context-based searching. A context in

our approach is a set of tags assigned to a file (or resource) by a user. Based on tag

popularity and relationships between tags, our proposed algorithm creates a hierarchy of

contexts on which a user can navigate to retrieve files in an effective manner. In this paper,

we first present the interesting techniques for tag organization in section 2; introduce tag-

based context and how to enhance tagging systems with context-based searching in section 3.

Our algorithm for creating a Directed Acyclic Graph of Tags (DAGoT) based on tag

popularity and relationship of tags is in section 4. This DAGoT is used to organize contexts

into a hierarchical structure so that we can enhance personal file retrieval with context-based

searching. An implementation and experimental results using real data are presented in

section 5. Our conclusion and perspectives are in the last section.

Enhancing personal file retrieval in SFS with tag-based context

2 Related Works

(Delicious) is a well-known online bookmark server where users can use their own tags

to organize and retrieve their bookmarks. In Delicious, two or more tags associated to the

same bookmark are considered as related. The number of bookmarks associated to a tag by a

user is called the popularity of tag. When a tag is chosen, a list of bookmarks tagged with it

and a list of its related tags are returned. Related tags are the way to navigate between tags to

revisit interesting bookmarks. However, when the number of bookmarks and tags increase,

parsing the result for a bookmark or choosing a right tag from related tags to refine search

result becomes a tremendous task for a user. On desktops, tags are also used for personal file

retrieval. Users in Spotlight (Apple Computer, 2005) can assign a keyword to a set of

semantically related files and retrieve those files using a simple keyword search. In the file

system domain, LFS (Padioleau, 2005) allows users to associate files with tags representing

file properties. LFS supports axioms between tags as a parent-child relationship. Users can

manually create axioms between their tags. From the axioms, a taxonomy of tags is created.

Users can navigate on the taxonomy for file retrieval as they do with traditional directories.

TagFS (Bloehdorn et al., 2006) organizes tags in related tags as the way of Delicious.

Consequently, TagFS has the same difficulty when the number of files and tags increases.

ROOT

Article
(5)

FinalVersion
(3)

RIVF
(2)

Vacation
(2)

Hanoi
(1)

Paris
(1)

2007
(8)

file1.doc file2.pdf file3.doc file4.pdf

Upper
context

Lower
context

JDIR
(4) {2007, Vacation, Hanoi}file8.jpg

{2007, Vacation, Paris}file7.jpg

{2007, FinalVersion, RIVF}file6.pdf

{Article, 2007, RIVF}file5.doc

{Article, JDIR, 2007, FinalVersion}file4.pdf

{Article, JDIR, 2007, FinalVersion}file3.doc

{Article, JDIR, 2007}file2.pdf

{Article, JDIR, 2007}file1.doc

Tags assigned to fileFile

{2007, Vacation, Hanoi}file8.jpg

{2007, Vacation, Paris}file7.jpg

{2007, FinalVersion, RIVF}file6.pdf

{Article, 2007, RIVF}file5.doc

{Article, JDIR, 2007, FinalVersion}file4.pdf

{Article, JDIR, 2007, FinalVersion}file3.doc

{Article, JDIR, 2007}file2.pdf

{Article, JDIR, 2007}file1.doc

Tags assigned to fileFile

1Hanoi

1Paris

2Vacation

2RIVF

3FinalVersion

4JDIR

5Article

82007

PopularityTag

1Hanoi

1Paris

2Vacation

2RIVF

3FinalVersion

4JDIR

5Article

82007

PopularityTag

A. – Example of postings made by a user.

B. – Popularity of tagsC. – The Corresponding DAGoT

FIG. 1 – Example of a DAGoT created from tag popularity and relationship of tags.

3 Definition of the tag-based context

A user in a tagging system makes a post to assign a file with a set of tags. Each tag

represents a concept or an object related to the file. And the set of tags assigned to the file

represents a topic, or a subject that file owner thinks the file concern. For example, a user

H. B. Ngo et al.

RNTI - X -

may assign the set of tags {Vacation, Paris, 2007} to file myphoto.jpg to recall that the

photo was taken during vacation of summer ‘07 in Paris. We call a set of tags assigned to a

resource by a user a tag-based context (or context for short). The meaning of a context is

aggregated from its elements. A context is more meaningful than a tag. For example, the

context {Vacation, Paris, 2007} is quite more relevant than the tag 2007. In fact, when

assigning a set of tags to a file, a user wants to classify the file using context represented by

that set of tags for later retrieval. So tagging systems should provide users with file retrieval

replying on context - characteristics used when classifying files.

The figure 1.A is an example of postings made by a user. If the user makes a tag-based

searching with tag Article, five files (from file1 to file5) will be returned. These files belong

to three contexts {Article, JDIR, 2007}, {Article, JDIR, 2007, FinalVersion} and {Article,

2007, RIVF}. A tag usually participates in many contexts. The figure 1.A above shows that

tag JDIR participates in two related contexts {Article, JDIR, 2007} and {Article, JDIR,

2007, FinalVersion}. The former is more general than the latter. In the next section we

propose a method to classify the contexts into a hierarchical structure: from general to

specific contexts.

4 Context-based File Retrieval

We propose a system that will automatically transfer a user to the most popular context

that a given tag participates in. Files that hit the context will be returned. If not satisfied, the

user can go down to a more specific context to refine his request or change up to a more

general context. Our solution is based on the tag popularity and relationship between tags to

classify contexts into a hierarchical structure: from general to specific contexts. Our

proposed algorithm classifies personal tags into a Directed Acyclic Graph according to tag

popularity. This Directed Acyclic Graph of Tags (DAGoT) is used to automatically organize

files into suitable contexts, to identify the most general context of a tag and allow a user to

navigate from a context to another one to retrieve files in an effective manner.

A DAGoT has three node types: tag nodes, leaf nodes and a root node. A tag node

represents a tag created by a user. It has a label and popularity. A tag node can have many

parents and many children. A leaf node represents a file tagged by a user. It has a location,

such as a URL, from which the file can be accessed. A leaf node has one or more tag nodes

as its parent nodes. A root node is the beginning of a DAGoT. A root node is the most

popular tag node. There are three types of edges: related edges, least popular edges and leaf

edges. When two tags are assigned to the same document, we say they are two related tags.

A related edge connects two related tag nodes together. The direction of the edge is from the

more popular tag node (upper tag node) to the less popular one (lower tag node) . If two

related tag nodes have the same popularity, the one which has the smaller label is the upper.

The tag with no parent will take the root node as his parent. A least popular edge is a related

edge which connects a tag node and its least popular upper nodes. The least popular upper

nodes of a tag node are called the parents of the tag node. The parents of a tag node do not

have to be related with each other. We support that a tag t has three upper tag nodes which

have the corresponding labels “t1”, “t2” and “t3” and popularities 3, 2 and 2. In this case, “t2”
and “t3” are candidates for the parents of t. If “t2” and “t3” are not related tags, then they are

both accepted as the parents of t. If not, only the tag “t3” will be accepted as the parent of t
because the label “t3” is greater than the label “t2”. When a tag is assigned to a file, a leaf

Enhancing personal file retrieval in SFS with tag-based context

edge is created from the tag node to leaf node respectively. The figure 1.C represents the

DAGoT of the tags in FIG 1.A. The thin, the thick and the dot arrows represent respectively

the related, the least popular and the leaf edges. To be concise, we just show files associated

with tag JDIR. The DAGoT shows that tag JDIR accepts tag Article as its parent and

FinalVersion as its child. JDIR participates in the two contexts {2007, Article, JDIR} and

{2007, Article, JDIR, FinalVersion}. The first one is its most popular context which

contains its more popular related tags. This is the context that the system will return when a

user makes a context-based searching with the given tag JDIR. From JDIR, the user can

refine his search query by moving to its child tag FinalVersion. The least popular edges

maintain a hierarchical relationship between contexts. They are used as guideline for the user

to navigate from one context to another.

(1) Res(t) ←{r∈R | (r,t)∈P}: The leaf edges from a tag to all its resources

(2) Tag(r) ←{t∈T | (r,t) ∈P}: The leaf edges from all associated tags to a resource

(3) Pop(t) ←card({r∈R | (r,t)∈P}): The popularity of a tag

(4) Rel(t1,t2) ←∃r∈R | (r,t1)∈P & (r,t2)∈P: Check if a related edge exists between tags

(5) Upper(t’) ←{t | Rel(t’,t) & Pop(t)>Pop(t’)}: Related edges arrive at tag t’

(6) Upper(t’) ←{t | Rel(t’,t) & Pop(t) = Pop(t’) & label(t)<label(t’)}: If tags t’ and t

have the same popularity, the label of t has to be smaller than the label of t’

(7) Pmop(t) ← min{Pop(p) | p∈Upper(t)}: The smallest popularity among the upper

tags of t

(8) Parent(t) ←{p | p∈Upper(t)} & Pop(p) = Pmop(t) & !∃p' & p'∈Upper(t) & Rel(p,p')

& Pop(p') = Pmop(t) & Label(p') < Label(p)}: Least popular edges arrive at tag t

(9) Children(t) ←{ c∈T | t∈Parent(c)}: Least popular edges starting from tag t

TAB. 1 – Formal model for a DAGoT.

For each user, a tagging system is formally represented as a tuple U:=(R,T,P), where R

and T are finite sets that represent the files and tags managed by the user. P represents the

postings made by the user. A posting represents the relationship between a resource and a

tag, P = RxT. The formal model for a DAGoT is described in TAB 1.

(10) Rsat(t) ←{r∈ Res(t) | Tag(r) ⊂ (Upper(t) ∪ {t}) }

(11) Psat(t)←Parent(t)

(12) Csat(t)←Children(t)

(13) Cbfr(t)←[Rsat(t), Psat(t), Csat(t)]

TAB. 2 – Simple context-based file retrieval.

In a simple case, context-based file retrieval can be defined as in TAB 2. Given a tag t, its

context-based file retrieval Cbfr(t) contains three types of information: a set of files Rsat(t)
that hit the most popular context containing t, a list of parent tags Psat(f) guiding to more

general contexts, and a list of children tags Csat(f) guiding to more specific contexts. In the

above example, we have Cbfr(JDIR) =[{file1.doc, file2.pdf},{Article},{FinalVersion}]. In

fact, Rsat does not always return a value for every tag. There are some tags for which Rsat
is empty. We call t an empty tag if its Rsat(t) is empty and it has only one parent and one

H. B. Ngo et al.

RNTI - X -

child. We propose to pass through an empty tag. The searching result of an empty tag is

automatically replaced by the searching result of its unique child. In the above example,

Article is an empty tag. Therefore Cbfr(Article) is automatically replaced by Cbfr(JDIR). In

addition, the parent role and children role of an empty tag are also replaced by its parent and

child. So the context-based file retrieval is redefined as the expressions in TAB 3 below.

(14) Empty(t) ← card(Rsat(t))=0&card(Children(t))=1& card(Parent(t))=1

(15) Cbfr(t) ← [Rsat(t), Psat(t),Csat(t)] | !Empty(t)

(16) Cbfr (t)← Cbfr (c) | Empty(t) & c∈Children(t)

(17) Psat(t) ← { p∈Parent(t) | !Empty(p) }

(18) Psat(t) ← Psat(p) | p∈Parent(t) & Empty(p)

(19) Csat(t) ← {c∈Children(t) | !Empty(c)}

(20) Csat(t) ← Csat(c) | c∈Children(t) & Empty(c)

TAB. 3 – Complete context-based file retrieval.

5 Implementation and testing

First we downloaded posts of 46 random persons from (Delicious) to calculate the

number of tags and related resources per person and the number of resources and related tags

per tag. Next, we implemented the algorithm for creating DAGoT and used the above

tagging data to test the algorithm. We made statistics on the 46 created DAGoTs in order to

validate our approach. The TAB 4 compares useful values for file retrieval in two cases. The

average values of compared characteristics in context-based model using DAGoT are all

smaller than the ones in the Delicious model. In the Delicious model, a user has about 717

tags to choose. Reversely, a user in context-based file retrieval model has only 145 contexts

to choose. This proves that the DAGoT model better supports users in personal file retrieval.

The smaller ranges of the values of compared characteristics in the context-based model

using the DAGoT show that the DAGoT has a balance structure. This prevents from the

cases where there are thousands of hit resources or hundreds of related tags with a given tag.

Delicious Model
(Tag-based File Retrieval)

DAGoT Model
(Context-based File Retrieval)

Average: 717 Average: 145 Tags per user

Range: 2-4590

Contexts per user

Range: 2-663

Average: 4.6 Average: 2.2 Resources per tag

Range: 1-1426

Resources per context

Range: 1-96

Average: 16.5 Average: 1.1 Related tags per tag

Range: 1-3715

Parents per tag

Range: 1-23

Average: 2.7 Children per tag

Range: 1-113

TAB 4. – Comparison between the Delicious model and the DAGoT model.

Enhancing personal file retrieval in SFS with tag-based context

6 Conclusion and Future Works

We have proposed to enhance personal file retrieval with context-based searching. We

support that each user has an own personal vocabulary of tags that are semantically grouped

into different contexts. The set of tags associated to a file by a user creates a context. We

proposed an algorithm creating automatically a DAGoT based on tag popularity and

relationships of tag. This DAGoT is used to identify automatically the hit context for a given

tag. Using DAGoT, users can navigate from one context to others to retrieve his files in an

efficient manner. For the future, we will integrate this tagging system into Ontology-based

file system (Ngo et al., 2007) and propose a complete method for file retrieval in which we

take into account both extrinsic file semantics and intrinsic file semantics.

References

Apple Computer (2005). Inc: Tiger Developer Overview Series - Working with Spotlight.

http://developer.apple.com/macosx/spotlight.html.

Barreau, D., and B. Nardi, (1995). Finding and reminding: file organization from the

desktop. SIGCHI Bulletin, 27(3), 39-43.

Bloehdorn, S., O. Görlitz, S. Schenk, and M. Völkel, (2006). TagFS --- Tag Semantics for

Hierarchical File Systems. Proceedings of the 6th International Conference on

Knowledge Management (I-KNOW 06), Graz, Austria, September 2006.

Delicious. http://del.icio.us/

Khoo, C., B. Luyt, C. Ee, J. Osman, H.H. Lim, and S. Yong (2007). How users organize

electronic files on their workstations in the office environment: a preliminary study of

personal information organization behaviour. Information Research, 12(2), paper 293.

Ngo, H.B., C. Bac, and F. Silber-Chaussumier (2007). Toward ontology based semantic file

systems. Proceedings of the 5
th

 International Conference on Research, Innovation &

Vision for the Future, Hanoi, Vietnam.

Padioleau, Y. (2005). Logic File System, un système de fichier basé sur la logique. Thèse de

doctorat, Université de Rennes 1.

Résumé

Depuis peu, les étiquettes sont utilisées largement pour identifier des contenus aussi bien

sur le bureau informatique des utilisateurs que sur les sites coopératifs du Web dit 2.0. Notre

recherche se focalise sur l'organisation assistée des étiquettes personnelles afin d'améliorer la

pertinence des recherches de fichiers personnels associés à des étiquettes. Notre proposition

utilise la notion de contexte comme point central. Un contexte est constitué à partir d'un

ensemble d'étiquettes affectées par un utilisateur à un fichier. Nous proposons une

infrastructure qui permet à un utilisateur de naviguer à travers les contextes pour retrouver

ses fichiers.

