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Abstract. We propose a novel algorithm for extracting the structueBayesian
network from a dataset. Our approach is based on generamsditional en-
tropies, a parametric family of entropies that extends gwealShannon condi-
tional entropy. Our results indicate that with an apprderéhoice of a general-
ized conditional entropy we obtain Bayesian networks tla@elrsuperior scores
compared to similar structures obtained by classical @rfee methods.

1 Introduction

A Bayesian Belief Network (BBN) structure is a directed dirygraph which represents
probabilistic dependencies among a set of random variables

Inducing a BBN structure for the set of attributes of a datmsa well known problem and
a challenging one due to enormity of the search space. Théaunfipossible BBN structures
grows super-exponentially with respect to the number ohthaes.

In Cooper and Herskovits (1993), where the K2 heuristic @dtlgm is introduced, a mea-
sure of the quality of the structure is derived based on isggy@r probability in presence of
a dataset. An alternative approach to compute a BBN streicturased on the Minimum De-
scription Length principle (MDL) first introduced in Rissam(1978). The algorithms of Lam
and Bacchus (1994) and Suzuki (1999) are derived from tinsipte.

We propose a new approach to inducing BBN structures frommsets based on the notion
of B-generalized entropy3GE) and its correspondingrgeneralized conditional entropg{
GCE) introduced in Havrda and Charvat (1967) and axiomaiizé&imovici and Jaroszewicz
(2002) as a one-parameter family of functions defined oritjwars (or probability distribu-
tions). The flexibility that ensues allows us to generate BBlith better scores than published
results.

One important advantage of our approach is that, unlike €oapd Herskovits (1993) it
is not based on any distributional assumption for develptiie formula.

2 Generalized Entropy and Structure Inference

The set of partitions of a sét is denoted byPART(S). Thetrace of a partition = on a
subsetl” of S is the partitiontr = {T'N B; | i € I andT N B; # 0} of T. The usual order
between set partitions is denoted by™ It is well-known that(PART(.S), <) is a bounded
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lattice. The infimum of two partitions andn’ = {B,|j € J} on S, denoted withr A 7/, is
the partition{B; N B;|i € I,j € J,B; N B; # 0} onS . The least element of this lattice is
the partitionas = {{s} | s € S}, the largest is the partitiong = {S}.

The notion of generalized entropy grentropy was introduced in Havrda and Charvat
(1967) and axiomatized for partitions in Simovici and Jasvgicz (2002). IfS is a finite
set andr = {Bj,..., By} is a partition ofS, the g-entropy ofr is the numbefH{s(7) =

B
<1 - (@) > for 8 > 1. The Shannon entropy is obtainedass_.; Hg().

1
T—21-7 El

For 8 > 1 the functionHsz : PART(S) — R>¢ is anti-monotonic. ThusHg(m) <
Hﬁ(as’) = W, Wheren |S|
Letw, o € PART(S) be two partitions, where = {B1, ..., B, } ando = {C1,...,Cy}.

The -conditional entropy ofr ando is Hs(n|o) = -7, (%)ﬁ Hp(me,). Itis immediate
thatHs(m|ws) = Hg(w) and thatH(r|as) = 0. Also, in Simovici and Jaroszewicz (2006) it
is shown that{g(r|o) = Hg(m A o) — Hg(o), a property that extends the similar property of
Shannon entropy.

Wheng > 1 the 8-GCE is dually anti-monotonic with respect to its first argagmhand is
monotonic with respect to its second argument. MoreovehaveHz(w|o) < Hg().

Let D be a dataset with set of attributAstr(D). The domain of attributel; € Attr(D)
isDom(4;). The projection of a tuple € D on X is the restrictiort[X] of ¢ to the setX. The
set of attributesy defines a partitiom* on D, which groups together the tuples that have the
equal projections oLX .

Let A be an attribute and IeX be set of parents fad, whereDom(A) = {v1, va, ..., Vs }
andDom(X) = [[gcx Dom(B) = {u1,uz, ..., un }. Definep;; = P(t[A] = v;[t[X] = u;).
We haven[},1 < Z?lefj < 1for 8 > 1. X is considered as a “good” parent set for
A if knowing the its value enables us to predict the valuedofvith a high probability, that
is, if a; = Y lpf] is close tol for every j where P(t[X] = u;) is sufficiently large.
Clearly, X is a “perfect” parent n‘z _,a; = m. The8-GCE captures exactly this parent-
hood quality measure. Indeed, suppose that= {B;|1 < i < n} and7X = = {Cj]1 <
Jj < m}, where fort € B; we havet[4] = v;, and fors € C; we haves[X] = u; .

Then,p;; = P(t[{A] = v|t[X] = u;) = P(t € Bi|t € C;) = 'B‘gc‘l which implies
Hp(n|m) = 1=5=5 2=y PP(C;) (1 — a;). Thus, minimizingHs(7#|7X) amounts to
reducing the values dfl — a;) as much as possible for thoge where|C;| is large, that is,
P(C;) = P(t[X] = u;) is non-trivial. We refer to quantit§{s(7*|7X) as theentropy of

node A in presence of set X. However, even ifX = argminx (Hs(r4|xX)), the value of
the minimum itself may be too high to insure good predictghilAn alternative is to mea-

sure the reduction of entropy of nodeas a result of presence of slétasL’r(lf{—) Since

0 < Hp(r4|7X) < Hg(r*) we haved < M < 1. If X is a perfect parent set fof,

thena; = 1for1 < j < m, soHg(r4|xX) = 0.
Lete € [0,1] be a number referred to asediction threshold. We regardX as ae-suitable

parent ofA if H%(”i% <e.

5(mA)
To avoid cycles in the network we start from a sequence abatasA;, 4,, ..., A, and
we seek the set of parents fdr, in the set®(A4;) = {A4,...,4,-1}, a frequent assumption
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FiG. 1 — Visualization of the Algorithm

(see Cooper and Herskovits (1993); Suzuki (1999)). In &ditwe set a bound on the
maximum number of parents. The setA;) may contain many subsets that arsuitable.

A possible solution is to choose arsuitable parent seX C ®(A;) with minimum 3-GCE
Hg(m#|7*). By the monotonicity property oB-GCE with respect to second argument we
havers ([ (4)) < Hg(ni|mtAn Az Aiad) < o< (i |rlA) < Hp(ah).
Then, for a givery, if X has the minimunt{s (74 |7%) among alle-suitable parents of.;,
thenX has the maximum possible size. To simplify the structuretrage some predictability
for simplicity by adopting a heuristic approach which findsimimal set of parents for a node
with highest possible reduction of entropy of that child eadh its presence.

Define ©§(A;) = {X C ®(A;)|X is ane-suitable parent ofl; and|X| = I} andy =
min{n € N|®E( ;) # 0}. Whenp < r, we have the sequence of nonempty collections of
sets of attribute®y,(4;), ©;,,1(4i), ..., ©5.(A;) by the monotonicity property g8-GCE.

Let X, = aTgminXegz(Ai)(Hﬁ(ﬂAi|7TX)) be the first set of sizé (in lexicographical
order) that minimize§{s(74:|7X). We limit our parent search to the sequence of §ets
(X Xpt1, ..., Xy), where the sets are listed in increasing order of size. Foséyuence
8§ = (Xu, Xut1,--.,X,) defined above We havHﬁ( ) > Ha(rdi|pXert) > 0 >
Hp (A |7Xr). The set of pointg (0, Hs(74¢))} U {(]L'Hg( As |7TXP ) | p<p<r}in
R? can be placed on a non-increasing curve with height Hs (7)) — Hg(r4i|r %) as
shown in Figure 1. We initialize the current parent &gt to () and iterate over members of
8 in increasing order of their size. The membéy € § leads to a nontrivial improvement in

predictability overX,, if HﬁHﬁ(;"i) ;{:ﬁ(z‘;‘(’:?“) > v=u_This happens if the decrease in
HQ(TFA ™

) when the parent set of; is changed from’(u to X, is greater than or equal to
linear decrease with respect to the two end points of thespanding non-increasing curve as
shown in Figure 1. The end points of the curve @rgH (7)) and (r, Hg (74 |7*")) and
the linear decrease with respect to two end points of theecwwhen we move from u to v on

x-axis which correspond to parent séfs and.X,, is (0= — (Hp(r i)~ Hﬁ(” L)) (o)

Note thatv = v + w wherel < w < r — u. This suggests that we do not stop the process
if X1 does not satisfy the above inequality since there may beenpaetX, € § where

v > u+ 1 with non-trivial improvement in predictability with respigto current parent sex,,.
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Algorithm 1 : BuildBayesNet

input : Dataset D, Real 3, ¢, r
Il € € [0, 1] is the prediction threshold.
/I B > 1 is the parameter faB-entropy.
Il r is the maximum number of parents.
/I Attr(D) is a list of attributes ofD where if
/11 < i< j < |Attr(D)|theith element of the list can
/I be a parent ofth element, but not vice versa.
output : A Network Structure forD
NetworkStructure N
for i — |Attr(D)|to1do
Node A; «— Attr(D)[i];
Integer p < 0, m < min(r,i — 1)
Real H[m + 1]
Set 8[m + 1]
H[0] — Hg(n™)
for j — mto1ldo
Compute ©5 (A;)
if ©5(A;) = 0 then
L “break
else

L 8[j] — aTgmi"ze(—);.(Ai)(Hﬁ(ﬂ'Ai|7TI))

H[j] « Hp(mi |87
=3
N.addNode(A;)

if u # 0then

Integer u — 0

for v «— ptom do

L it HLd=HL] > H[O)=Hlm] then

v — U
L u+«v

forall z € §[u] do
| N.addEdge(z — Aj;)

re?urn N; /lend of algorithm

The increase in size of the parent set is penalized by makimgdndition stricter for larger
parent sets. Also, if none of the parent set§ iof sizeu to » — 1 satisfy the inequality, then
X, will.

3 Experimental Results

We compared the generated results with well-known Bayestiaictures in literature using
two scoring schemes, MDL used by Lam and Bacchus (1994) amdk&(1999) and the
scoring method of Cooper and Herskovits (1993). Experismiéntolved the Brain Tumor
dataset (Cooper (1984)), the Breast Cancer (Blake et 8989, ALARM (Beinlich et al.
(1989)), and IRIS (Blake et al. (1998b)). The experimergslits are presented in Table 1. The
last row of each table contains the two scores for publistedtsires (according to Williams
and Williamson (2006) and Beinlich et al. (1989)). We asstina¢ the distribution on priors
of the structures for a given dataset is uniform Cooper andhkd®its (1993). Experiments
were performed on a machine with 64-bit Intel Xeon processor

The scores for generated network structures dependsaone and in many cases is better
than the scores for established structures (C-H scoresgirertand MDL scores are lower).
Figure 2 represents four different structures for Brain duiataset. Structure A is the one
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TAB. 1 — Experimental Results

Generated Structures 286 rows
Generated Structures’ 10000 rows ] < z 10g(C-H Score) MDL Score Time(ms)
- 1.1 0.5 2 -1172 3210.22 144
€} € T log(C-H Score) MDL Score Time(ms)
1.0 0.6 3 -1197 8640.41 202
1.0 1.0 3 -7483 13631.52 57
1.7 0.3 2 -1207 3669.88 121
1.0 0.8 2 -7506 13474.37 51
1.8 0.7 3 -1214 3859.67 196
1.6 0.7 2 -7588 13680.31 45
1.0 0.5 3 -1215 3511.35 202
2.1 0.5 3 -7588 13693.21 55
Original Structure -8115 14410.10 - 12 04 2 1224 4968.50 183
9 . 1.0 0.7 3 -1256 13667.40 202
Original Structure -1201 4142.03 -
Brain Cancer Results Breast Cancer Results
Generated Structures 20002 rows
B € ™ log(C-H Score) MDL Score Time(s) Generated Structures 150 rows
1.2 0.5 3 -114931 270298.25 542 €] € T log(C-H Score) MDL Score Time(ms)
1.2 0.5 4 -114981 271590.92 12801 1.0 0.4 2 -902 127543.87 109
1.2 0.6 4 -116081 272665.06 12802 1.8 0.7 3 -905 13279.40 173
1.1 0.7 3 -116914 271469.89 546 Original Structure -932 261481.02 -
Original Structure -159306 378518.37 -
Alarm Results Iris Results

introduced by G. F. Cooper. StructuregB= 1.0, = 1.0, =3),C(8 =1.0,a = 0.8,r =
2)and OB = 2.1, = 0.5, = 3) are the ones generated by our approach.

4 Conclusions

We developed an approach for generating a Bayesian netwadtge from data based on
notion of generalized entropy.

The best parent-child relationships among attributes tained at values off that are
highly dependent on the data set, a fact that suggests tW&@ approach is preferable to
using the Shannon entropy.
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Résumé

Nous proposons un nouvel algorithme pour extraire la strea’un réseau Bayésien d’un
ensemble de données. Notre approche est basée sur lesentmpditionnelles généralisées,
une famille conditionnelle d’entropies qui étend I'entmponditionnelle de Shannon.Nos ré-
sultats indiquent que, avec un choix approprié d’une ergrognditionnelle généralisée, nous
obtenons des réseaux Bayésiens qui ont des scores supé@upustructures similaires obte-
nues par des méthodes classiques d’inférence.
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