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Abstract. We propose a novel algorithm for extracting the structure ofa Bayesian
network from a dataset. Our approach is based on generalizedconditional en-
tropies, a parametric family of entropies that extends the usual Shannon condi-
tional entropy. Our results indicate that with an appropriate choice of a general-
ized conditional entropy we obtain Bayesian networks that have superior scores
compared to similar structures obtained by classical inference methods.

1 Introduction

A Bayesian Belief Network (BBN) structure is a directed acyclic graph which represents
probabilistic dependencies among a set of random variables.

Inducing a BBN structure for the set of attributes of a dataset is a well known problem and
a challenging one due to enormity of the search space. The number of possible BBN structures
grows super-exponentially with respect to the number of thenodes.

In Cooper and Herskovits (1993), where the K2 heuristic algorithm is introduced, a mea-
sure of the quality of the structure is derived based on its posterior probability in presence of
a dataset. An alternative approach to compute a BBN structure is based on the Minimum De-
scription Length principle (MDL) first introduced in Rissanen (1978). The algorithms of Lam
and Bacchus (1994) and Suzuki (1999) are derived from this principle.

We propose a new approach to inducing BBN structures from datasets based on the notion
of β-generalized entropy (β-GE) and its correspondingβ-generalized conditional entropy (β-
GCE) introduced in Havrda and Charvat (1967) and axiomatized in Simovici and Jaroszewicz
(2002) as a one-parameter family of functions defined on partitions (or probability distribu-
tions). The flexibility that ensues allows us to generate BBNs with better scores than published
results.

One important advantage of our approach is that, unlike Cooper and Herskovits (1993) it
is not based on any distributional assumption for developing the formula.

2 Generalized Entropy and Structure Inference

The set of partitions of a setS is denoted byPART(S). The trace of a partition π on a
subsetT of S is the partitionπT = {T ∩ Bi | i ∈ I andT ∩ Bi 6= ∅} of T . The usual order
between set partitions is denoted by “≤”. It is well-known that(PART(S),≤) is a bounded
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lattice. The infimum of two partitionsπ andπ′ = {Bj |j ∈ J} on S, denoted withπ ∧ π′, is
the partition{Bi ∩ Bj |i ∈ I, j ∈ J, Bi ∩ Bj 6= ∅} on S . The least element of this lattice is
the partitionαS = {{s} | s ∈ S}; the largest is the partitionωS = {S}.

The notion of generalized entropy orβ-entropy was introduced in Havrda and Charvat
(1967) and axiomatized for partitions in Simovici and Jaroszewicz (2002). IfS is a finite
set andπ = {B1, . . . , Bm} is a partition ofS, theβ-entropy ofπ is the numberHβ(π) =

1
1−21−β

(

1 −
∑m

i=1

(

|Bi|
|S|

)β
)

for β > 1. The Shannon entropy is obtained aslimβ→1 Hβ(π).

For β ≥ 1 the functionHβ : PART(S) −→ R≥0 is anti-monotonic. Thus,Hβ(π) ≤

Hβ(αS) = 1−nβ−1

(21−β−1)·nβ−1 , wheren = |S|.

Let π, σ ∈ PART(S) be two partitions, whereπ = {B1, . . . , Bm} andσ = {C1, . . . , Cn}.

Theβ-conditional entropy ofπ andσ isHβ(π|σ) =
∑n

j=1

(

|Cj|
|S|

)β

Hβ(πCj
). It is immediate

thatHβ(π|ωS) = Hβ(π) and thatH(π|αS) = 0. Also, in Simovici and Jaroszewicz (2006) it
is shown thatHβ(π|σ) = Hβ(π ∧ σ)−Hβ(σ), a property that extends the similar property of
Shannon entropy.

Whenβ ≥ 1 theβ-GCE is dually anti-monotonic with respect to its first argument and is
monotonic with respect to its second argument. Moreover, wehaveHβ(π|σ) ≤ Hβ(π).

Let D be a dataset with set of attributesAttr(D). The domain of attributeAi ∈ Attr(D)
is Dom(Ai). The projection of a tuplet ∈ D onX is the restrictiont[X ] of t to the setX . The
set of attributesX defines a partitionπX onD, which groups together the tuples that have the
equal projections onX .

Let A be an attribute and letX be set of parents forA, whereDom(A) = {v1, v2, ..., vn}
andDom(X) =

∏

B∈X Dom(B) = {u1, u2, ..., um}. Definepij = P (t[A] = vi|t[X ] = uj).

We have 1
nβ−1 ≤

∑n
i=1 p

β
ij ≤ 1 for β ≥ 1. X is considered as a “good” parent set for

A if knowing the its value enables us to predict the value ofA with a high probability, that
is, if aj =

∑n
i=1 p

β
ij is close to1 for every j whereP (t[X ] = uj) is sufficiently large.

Clearly,X is a “perfect” parent if
∑m

j=1 aj = m. Theβ-GCE captures exactly this parent-
hood quality measure. Indeed, suppose thatπA = {Bi|1 ≤ i ≤ n} andπX = {Cj|1 ≤
j ≤ m}, where fort ∈ Bi we havet[A] = vi, and fors ∈ Cj we haves[X ] = uj .

Then,pij = P (t[A] = vi|t[X ] = uj) = P (t ∈ Bi|t ∈ Cj) =
|Bi∩Cj |
|Cj|

, which implies

Hβ(πA|πX) = 1
1−21−β

∑m
j=1 P β(Cj) (1 − aj). Thus, minimizingHβ(πA|πX) amounts to

reducing the values of(1 − aj) as much as possible for thosej’s where|Cj | is large, that is,
P (Cj) = P (t[X ] = uj) is non-trivial. We refer to quantityHβ(πA|πX) as theentropy of
node A in presence of set X . However, even ifX = argminX(Hβ(πA|πX)), the value of
the minimum itself may be too high to insure good predictability. An alternative is to mea-

sure the reduction of entropy of nodeA as a result of presence of setX asHβ(πA|πX)
Hβ(πA) . Since

0 ≤ Hβ(πA|πX) ≤ Hβ(πA) we have0 ≤
Hβ(πA|πX )
Hβ(πA) ≤ 1. If X is a perfect parent set forA,

thenaj = 1 for 1 ≤ j ≤ m, soHβ(πA|πX) = 0.
Let ε ∈ [0, 1] be a number referred to asprediction threshold. We regardX as aε-suitable

parent ofA if Hβ(πA|πX)
Hβ(πA) ≤ ε.

To avoid cycles in the network we start from a sequence of attributesA1, A2, ..., Ap and
we seek the set of parents forAi in the setΦ(Ai) = {A1, . . . , Ai−1}, a frequent assumption

RNTI - X -



D. A. Simovici and S. Baraty

FIG. 1 – Visualization of the Algorithm

(see Cooper and Herskovits (1993); Suzuki (1999)). In addition, we set a boundr on the
maximum number of parents. The setΦ(Ai) may contain many subsets that areε-suitable.
A possible solution is to choose anε-suitable parent setX ⊆ Φ(Ai) with minimumβ-GCE
Hβ(πA|πX). By the monotonicity property ofβ-GCE with respect to second argument we
haveHβ(πAi |πΦ(Ai)) ≤ Hβ(πAi |π{A1,A2,...Ai−2}) ≤ · · · ≤ Hβ(πAi |π{A1}) ≤ Hβ(πAi).
Then, for a givenε, if X has the minimumHβ(πAi |πX) among allε-suitable parents ofAi,
thenX has the maximum possible size. To simplify the structure, wetrade some predictability
for simplicity by adopting a heuristic approach which finds aminimal set of parents for a node
with highest possible reduction of entropy of that child node on its presence.

DefineΘε
l (Ai) = {X ⊆ Φ(Ai)|X is anε-suitable parent ofAi and|X | = l} andµ =

min{n ∈ N|Θε
n(Ai) 6= ∅}. Whenµ ≤ r, we have the sequence of nonempty collections of

sets of attributesΘε
µ(Ai), Θ

ε
µ+1(Ai), ..., Θ

ε
r(Ai) by the monotonicity property ofβ-GCE.

Let X` = argminX∈Θε
`
(Ai)(Hβ(πAi |πX)) be the first set of sizè (in lexicographical

order) that minimizesHβ(πAi |πX). We limit our parent search to the sequence of setsS =
(Xµ, Xµ+1, . . . , Xr), where the sets are listed in increasing order of size. For the sequence
S = (Xµ, Xµ+1, . . . , Xr) defined above we haveHβ(πAi |πµ) ≥ Hβ(πAi |πXµ+1) ≥ · · · ≥
Hβ(πAi |πXr ). The set of points{(0,Hβ(πAi))} ∪ {(p,Hβ(πAi |πXp)) | µ ≤ p ≤ r} in
R

2 can be placed on a non-increasing curve with heighth = Hβ(πAi) − Hβ(πAi |πXr ) as
shown in Figure 1. We initialize the current parent setXu to ∅ and iterate over members of
S in increasing order of their size. The memberXv ∈ S leads to a nontrivial improvement in

predictability overXu if Hβ(πAi |πXu )−Hβ(πAi |πXv )

Hβ(πAi )−Hβ(πAi |πXr )
≥ v−u

r
. This happens if the decrease in

Hβ(πAi |πX`) when the parent set ofAi is changed fromXu to Xv is greater than or equal to
linear decrease with respect to the two end points of the corresponding non-increasing curve as
shown in Figure 1. The end points of the curve are(0,Hβ(πAi)) and(r,Hβ(πAi |πXr )) and
the linear decrease with respect to two end points of the curve when we move from u to v on

x-axis which correspond to parent setsXu andXv is h·(v−u)
r

=
(Hβ(πAi )−Hβ(πAi |πXr ))·(v−u)

r
.

Note thatv = u + w where1 ≤ w ≤ r − u. This suggests that we do not stop the process
if Xu+1 does not satisfy the above inequality since there may be a parent setXv ∈ S where
v > u+1 with non-trivial improvement in predictability with respect to current parent setXu.
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Algorithm 1 : BuildBayesNet
input : Dataset D, Real β, ε, r
// ε ∈ [0, 1] is the prediction threshold.
// β ≥ 1 is the parameter forβ-entropy.
// r is the maximum number of parents.
// Attr(D) is a list of attributes ofD where if
// 1 ≤ i < j ≤ |Attr(D)| theith element of the list can
// be a parent ofjth element, but not vice versa.
output : A Network Structure forD
NetworkStructure N

for i← |Attr(D)| to 1 do
Node Ai ← Attr(D)[i];
Integer µ← 0, m← min(r, i− 1)
Real H[m + 1]
Set S[m + 1]

H[0]← Hβ(πAi )
for j ← m to 1 do

ComputeΘε
j(Ai)

if Θε
j(Ai) = ∅ then
break

else
S[j] ← argminx∈Θε

j
(Ai)

(Hβ(πAi |πx))

H[j] ← Hβ(πAi |πS[j])
µ← j

N.addNode(Ai)
if µ 6= 0 then

Integer u← 0
for v ← µ to m do

if H[u]−H[v]
v−u

≥ H[0]−H[m]
m

then
u← v

forall x ∈ S[u] do
N.addEdge(x→ Ai)

return N; //end of algorithm

The increase in size of the parent set is penalized by making the condition stricter for larger
parent sets. Also, if none of the parent sets inS of sizeµ to r − 1 satisfy the inequality, then
Xr will.

3 Experimental Results

We compared the generated results with well-known Bayesianstructures in literature using
two scoring schemes, MDL used by Lam and Bacchus (1994) and Suzuki (1999) and the
scoring method of Cooper and Herskovits (1993). Experiments involved the Brain Tumor
dataset (Cooper (1984)), the Breast Cancer (Blake et al. (1998a)), ALARM (Beinlich et al.
(1989)), and IRIS (Blake et al. (1998b)). The experimental results are presented in Table 1. The
last row of each table contains the two scores for published structures (according to Williams
and Williamson (2006) and Beinlich et al. (1989)). We assumethat the distribution on priors
of the structures for a given dataset is uniform Cooper and Herskovits (1993). Experiments
were performed on a machine with 64-bit Intel Xeon processor.

The scores for generated network structures depends onβ andε and in many cases is better
than the scores for established structures (C-H scores are higher and MDL scores are lower).
Figure 2 represents four different structures for Brain Tumor dataset. Structure A is the one

RNTI - X -



D. A. Simovici and S. Baraty

TAB . 1 – Experimental Results

Generated Structures 10000 rows
β ε r log(C-H Score) MDL Score Time(ms)
1.0 1.0 3 -7483 13631.52 57
1.0 0.8 2 -7506 13474.37 51
1.6 0.7 2 -7588 13680.31 45
2.1 0.5 3 -7588 13693.21 55
Original Structure -8115 14410.10 -

Generated Structures 286 rows
β ε r log(C-H Score) MDL Score Time(ms)
1.1 0.5 2 -1172 3210.22 144
1.0 0.6 3 -1197 8640.41 202
1.7 0.3 2 -1207 3669.88 121
1.8 0.7 3 -1214 3859.67 196
1.0 0.5 3 -1215 3511.35 202
1.2 0.4 2 -1224 4968.50 133
1.0 0.7 3 -1256 13667.40 202
Original Structure -1201 4142.03 -

Brain Cancer Results Breast Cancer Results
Generated Structures 20002 rows
β ε r log(C-H Score) MDL Score Time(s)
1.2 0.5 3 -114931 270298.25 542
1.2 0.5 4 -114981 271590.92 12801
1.2 0.6 4 -116081 272665.06 12802
1.1 0.7 3 -116914 271469.89 546
Original Structure -159306 378518.37 -

Generated Structures 150 rows
β ε r log(C-H Score) MDL Score Time(ms)
1.0 0.4 2 -902 127543.87 109
1.8 0.7 3 -905 13279.40 173
Original Structure -932 261481.02 -

Alarm Results Iris Results

introduced by G. F. Cooper. Structures B(β = 1.0, α = 1.0, r = 3), C(β = 1.0, α = 0.8, r =
2) and D(β = 2.1, α = 0.5, r = 3) are the ones generated by our approach.

4 Conclusions

We developed an approach for generating a Bayesian network structure from data based on
notion of generalized entropy.

The best parent-child relationships among attributes is obtained at values ofβ that are
highly dependent on the data set, a fact that suggests that the GCE approach is preferable to
using the Shannon entropy.
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FIG. 2 – Brain Tumor Structures
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Résumé

Nous proposons un nouvel algorithme pour extraire la structure d’un réseau Bayésien d’un
ensemble de données. Notre approche est basée sur les entropies conditionnelles généralisées,
une famille conditionnelle d’entropies qui étend l’entropie conditionnelle de Shannon.Nos ré-
sultats indiquent que, avec un choix approprié d’une entropie conditionnelle généralisée, nous
obtenons des réseaux Bayésiens qui ont des scores supérieurs aux structures similaires obte-
nues par des méthodes classiques d’inférence.
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