
Mining Implications from Lattices of Closed Trees

José L. Balcázar∗, Albert Bifet∗, Antoni Lozano ∗

∗ Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
{balqui,abifet,antoni}@lsi.upc.edu

Abstract. We propose a way of extracting high-confidence association rules
from datasets consisting of unlabeled trees. The antecedents are obtained through
a computation akin to a hypergraph transversal, whereas the consequents follow
from an application of the closure operators on unlabeled trees developed in pre-
vious recent works of the authors. We discuss in more detail the case of rules
that always hold, independently of the dataset, since these are more complex
than in itemsets due to the fact that we are no longer working on a lattice.

1 Introduction
In the field of data mining, one of the major notions contributing to the success of the area

has been that of association rules. Many studies of various types have provided a great advance
of the human knowledge about these concepts. One particular family of studies is rooted on
the previous notions of formal concepts, Galois lattices, and implications, which correspond to
association rules of maximum confidence.

These notions have allowed for more efficient works and algorithmics by reducing the
computation of frequent sets, a major usual step towards association rules, to the computation
of so-called closed frequent sets, a faster computation of much more manageable output size,
yet losing no information at all with respect to frequent sets.

It was realized some time ago that the plain single-relational model for the data, as em-
ployed by the computation of either closed sets or association rules, whereas useful to a certain
extent, was a bit limited in its applicability by the fact that, often, real-life data have some sort
of internal structure that is lost in the transactional framework. Thus, studies of data mining in
combinatorial structures were undertaken, and considerable progress has been made in recent
years. Our work here is framed in that endeavor.

In previous work, we have proposed a mathematical clarification of the closure operator
underlying the notion of closed trees in datasets of trees; the closure operator no longer works
on single trees but on sets of them. In a sense, made precise there, closed trees do not constitute
a lattice. A mathematically precise replacement lattice can be defined, though, as demonstrated
in (Balcázar et al., 2006), consisting not anymore of trees but of sets of trees, and with the
peculiar property that, in all experiments with real-life data we have undertaken, they turn out
to be actually lattices of trees, in the sense that every closed set of trees was, in all practical
cases, a singleton.

Mining Implications from Lattices of Closed Trees

Algorithmics to construct these closed sets have been studied in several references as (Chi
et al., 2005b), (Balcázar et al., 2007a), (Balcázar et al., 2007b), (Termier et al., 2004); see the
references in the survey (Chi et al., 2005a). We continue here this line of research by tackling
the most natural next step: the identification of implications out of the lattice of closed sets of
trees. We describe a method, along the line of similar works on sequences and partial orders
(Balcázar and Garriga (2007b), Balcázar and Garriga (2007a)) to construct implications from
the closed sets of trees, and we mathematically characterize, in terms of propositional Horn
theories, the implications that we find.

Then, we explain a major difference of our case with previous works: rules that would not
be trivial in other cases become redundant, and thus unnecessary, in the case of trees, due to
the fact that they are implicit in the combinatorics of the structures. An example will show best
our point here; please bear for now with some undefined notions that will be precised later on.
Consider a rule intuitively depicted as follows:

It naturally means that whenever a tree in the dataset under exploration has as (top-down)
subtrees the two trees in the antecedent, it also has the one in the consequent. Any tree having
a bifurcation at the root, as required by the first antecedent, and a branch of length at least two,
as required by the second one, has to have the consequent as a (top-down) subtree. Therefore,
the rule says, in fact, nothing at all about the dataset, and is not worthy to appear in the output
of a rule mining algorithm on trees.

Our second major contribution is, therefore, a study of some cases where we can de-
tect such implicit rules and remove them from the output, with low computational overhead.
Whereas further theoretical work might be useful, our contributions so far already detect most
of the implicit rules in real-life datasets, up to quite low support levels, and with a reasonable
efficiency. We report some facts on the empirical behavior of our implementations of both the
algorithm to find rules and the heuristics to remove implicit rules.

2 Preliminaries
Trees are connected acyclic graphs, rooted trees are trees with a vertex singled out as the

root, and unranked trees are trees with unbounded arity. We say that t1, . . . , tk are the com-
ponents of tree t if t is made of a node (the root) joined to the roots of all the ti’s. We can
distinguish between the cases where the components at each node form a sequence (ordered
trees) or just a set (unordered trees). We will deal with rooted, unranked, unordered trees. We
do not assume the presence of labels on the nodes. The (infinite) set of all trees will be denoted
with T , but actually all our developments will proceed in some finite subset of T which will
act as our universe of discourse.

In order to compare link-based structures, we are interested in a notion of subtree where
the root is preserved. A tree t′ is a top-down subtree (or simply a subtree) of a tree t (written
t′ � t) if t′ is a connected subgraph of t which contains the root of t. This notation can be
extended to sets of trees A � B: for all t ∈ A, there is some t′ ∈ B for which t � t′. Two

J. Balcázar et al.

trees t, t′ are said to be comparable if t � t′ or t′ � t. Otherwise, they are incomparable. Also
t ≺ t′ if t is a proper subtree of t′ (that is, t � t′ and t 6= t′).

The input to our data mining process is a given finite dataset D of transactions, where each
transaction s ∈ D consists of a transaction identifier, tid, and an unlabeled rooted tree. Tids
are supposed to run sequentially from 1 to the size of D. From that dataset, our universe of
discourse U is the set of all trees that appear as subtree of some tree in D.

Following standard usage, we say that a transaction s supports a tree t if t is a subtree
of the tree corresponding to transaction s. The number of transactions in the dataset D that
supports t is called the support of the tree t. A subtree t is called frequent if its support is
greater than or equal to a given threshold min_sup. The frequent subtree mining problem is
to find all frequent subtrees in a given dataset. Any subtree of a frequent tree is also frequent
and, therefore, any supertree of a nonfrequent tree is also nonfrequent.

We define a frequent tree t to be closed if none of its proper supertrees has the same
support as it has. Generally, there are much fewer closed trees than frequent ones. In fact, we
can obtain all frequent subtrees with their support from the set of closed frequent subtrees with
their supports.

The dataset defines a closure operator on the powerset of U , denoted ΓD, arising from a
Galois connection and developed in (Balcázar et al., 2006).

Definition The Galois connection pair:

• For finite A ⊆ D, σ(A) = {t ∈ T
∣∣ ∀ t′ ∈ A (t � t′)}

• For finite B ⊂ T , not necessarily in D, τD(B) = {t′ ∈ D
∣∣ ∀ t ∈ B (t � t′)}

Proposition 2.1 The composition ΓD = σ ◦ τD is a closure operator.

Theorem 2.2 A tree t is closed for D if and only if it is maximal in ΓD({t}).

We will construct association rules in a standard form from it, and show that they corre-
spond to a certain Horn theory; also, we will prove the correctness of a construction akin to the
instantaneous basis of Wild (1994) and Pfaltz and Taylor (2002).

3 Association Rules
Following standard usage on Galois lattices, we consider now implications (sometimes

called deterministic association rules, see e.g. Pfaltz and Taylor (2002)) of the form A → B for
sets of trees A and B from U . Specifically, we consider the following set of rules: A → ΓD(A).
Alternatively, we can split the consequents into {A → t

∣∣ t ∈ ΓD(A)}.
It is easy to see that D obeys all these rules: for each A, any tree of D that has as subtrees

all the trees of A has also as subtrees all the trees of ΓD(A).
We want to provide a characterization of this set of implications. We operate in a form

similar to Balcázar and Garriga (2007a) and Balcázar and Garriga (2007b), translating this set
of rules into a specific propositional theory which we can characterize, and for which we can
find a “basis”: a set of rules that are sufficient to infer all the rules that hold in the dataset
D. The technical details depart somewhat from Balcázar and Garriga (2007b) in that we skip a

Mining Implications from Lattices of Closed Trees

certain maximality condition imposed there, and are even more different from those in Balcázar
and Garriga (2007a).

Thus, we start by associating a propositional variable vt to each tree t ∈ U . In this way,
each implication between sets of trees can be seen also as a propositional conjunction of Horn
implications, as follows: the conjunction of all the variables corresponding to the set at the left
hand side implies each of the variables corresponding to the closure at the right hand side. We
call this propositional Horn implication the propositional translation of the rule.

Also, now a set of trees A corresponds in a natural way to a propositional model mA:
specifically, mA(vt) = 1 if and only if t is a subtree of some tree in A. We abbreviate m{t}
as mt. Note that the models obtained in this way obey the following condition: if t′ � t and
vt = 1, then vt′ = 1 too. In fact, this condition identifies the models mA: if a model m fulfills
it, then m = mA for the set A of trees t for which vt = 1 in m. Alternatively, A can be taken
to be the set of maximal trees for which vt = 1.

Note that we can express this condition by a set of Horn clauses: R0 = {vt′ → vt

∣∣ t′ �
t, t ∈ U , t′ ∈ U}. It is easy to see that the following holds:

Lemma 3.1 Let t ∈ D. Then mt satisfies R0 and also all the propositional translations of the
implications of the form A → ΓD(A).

Since ΓD({t}) = {t′ ∈ T
∣∣ t′ � t} by definition, if mt |= A, then A � t, hence

ΓD(A) � ΓD({t}), and mt |= ΓD(A). For R0, the very definition of mt ensures the claim.
We collect all closure-based implications into the following set:

R′
D =

⋃
C
{A → t

∣∣ ΓD(A) = C, t ∈ C}

For use in our algorithms below, we also specify a concrete set of rules among those that
come from the closure operator. For each closed set of trees C, consider the set of “immediate
predecessors”, that is, subsets of C that are closed, but where no other intervening closed set
exists between them and C; and, for each of them, say Ci, define:

Fi = {t
∣∣ t � C, t 6� Ci}

Then, we define HC as a family of sets of trees that fulfill two properties: each H ∈ HC
intersects each Fi, and all the H ∈ HC are minimal (with respect to �) under that condition.

We pick now the following set of rules RD,

RD =
⋃
C
{H → t

∣∣ H ∈ HC , t ∈ C}

as a subset of the much larger set of rules R′
D defined above, and state our main result:

Theorem 3.2 Given the dataset D of trees, the following propositional formulas are logically
equivalent:

i/ the conjunction of all the Horn formulas satisfied by all the models mt for t ∈ D;

ii/ the conjunction of R0 and all the propositional translations of the formulas in R′
D;

J. Balcázar et al.

iii/ the conjunction of R0 and all the propositional translations of the formulas in RD.

Proof Note first that i/ is easily seen to imply ii/, because Lemma 3.1 means that all the
conjuncts in ii/ also belong to i/. Similarly, ii/ trivially implies iii/ because all the conjuncts in
iii/ also belong to ii/. It remains to argue that the formula in iii/ implies that of i/. Pick any Horn
formula H → v that is satisfied by all the models mt for t ∈ D: that is, whenever mt |= H ,
then mt |= v. Let v = vt′ : this means that, for all t ∈ D, if H � t then t′ � t, or, equivalently,
t′ ∈ ΓD(H). We prove that there is H ′ � H that minimally intersects all the sets of the form

Fi = {t
∣∣ t � C, t 6� Ci}

for closed C = ΓD, and for its set of immediate predecessors Ci. Once we have such an H ′,
since t ∈ C, the rule H ′ → t is in RD. Together with R0, their joint propositional translations
entail H → t: an arbitrary model making true H and fulfilling R0 must make H ′ true because
of H ′ � H and, if H ′ → t holds for it, t is also true in it. Since R0 and H ′ → t are available,
H → t holds.

Therefore, we just need to prove that such H ′ � H exists. Note that H already intersects
all the Fi: H � ΓD(H) = C; suppose that for some proper predecessor Ci, H does not
intersect Fi. This means that t � Ci for all t ∈ H , and thus, the smallest closed set above H ,
that is, ΓD(H) = C, must be below the closed set Ci or coincide with it, and neither is possible.

Hence, it suffices to consider all the sets of trees H ′′, where H ′′ � H , that still intersect
all the Fi. This is not an empty family since H itself is in it, and it is a finite family; therefore,
it has at least one minimal element (with respect to �), and any of them can be picked for our
H ′. This completes the proof.

4 On Finding Implicit Rules for Subtrees
We formally define inplicit rules as follows:

Definition Given three trees t1, t2, t3, we say that t1 ∧ t2 → t3 is an implicit Horn rule
(abbreviately, an implicit rule) if for every tree t it holds

t1 � t ∧ t2 � t ↔ t3 � t.

We say that two trees t1, t2, have implicit rules if there is some tree t3 for which t1 ∧ t2 → t3
is an implicit Horn rule.

A natural generalization having more than two antecedents could be considered; we cir-
cunscribe our study to implicit rules of two antecedents.

The aim of the next definitions is to provide formal tools to classify a rule as implicit.

Definition A tree c is a minimal common supertree of two trees a and b if a � c, b � c, and
for every d ≺ c, either a 6� d or b 6� d.

In the example of implicit rule given in the introduction, the tree on the right of the impli-
cation sign is a minimal common supertree of the trees on the left.

Mining Implications from Lattices of Closed Trees

Definition Given two trees a, b, we define a⊕ b as the minimal common supertree of a and b.

As there may be more than one minimal common supertree of two trees, we choose the one
with smallest natural representation, as given in (Balcázar et al., 2007b) to avoid the ambiguity
of the definition.

Definition A component c1 of a is maximum if any component c2 of a satisfies c2 � c1, and
it is maximal if there is no component c2 in a such that c1 ≺ c2.

Note that a tree may not have maximum components but, in case it has more than one, all
of them must be equal. The following facts on components will be useful later on. The proofs
are not difficult and will be provided in a later version of this paper, for the sake of lack of
space.

Lemma 4.1 If a tree has no maximum component, it must have at least two maximal incom-
parable components.

Lemma 4.2 Two trees have implicit rules if and only if they have a unique minimal common
supertree.

Using Lemma 4.2 we can compute implicit rules in an algorithmically expensive way,
obtaining minimal common supertrees, which has quadratic cost. To avoid that, we propose
several heuristics to speed up the process.

A simple consequence of these lemmas is:

Corollary 4.3 All trees a, b such that a � b have implicit rules.

One particularly useful case where we can formally prove implicit rules, and which helps
detecting a large amount of them in real-life dataset mining, occurs when one of the trees has
a single component.

Theorem 4.4 Suppose that a and b are two incomparable trees, and b has only one component.
Then they have implicit rules if and only if a has a maximum component which is a subtree of
the component of b.

Proof Suppose that a and b are two incomparable trees as described in the statement: a has
components a1, . . . , an, and b has only the component b1. We represent their structures graph-
ically as

n1 aa ...

b:

1b

a:

Suppose that a has a maximum component which is a subtree of b1. Without loss of
generality, we can assume that an is such a component. Then, we claim that a ∧ b → c is an
implicit rule, where c is a tree with components a1, . . . , an−1, and b1. That is,

J. Balcázar et al.

c:b:a:

1 n 1 n−1a b1aa1aa

To show that this is actually an implicit rule, suppose that, for some tree x, a � x and
b � x. From the fact that a � x, we gain some insight into the structure of x: it must
contain components where a’s and b’s components can map, and so, there must be at least n
components in x. So, let x1, . . . , xm be the components of x, with m ≥ n, and let us suppose
that ai � xi for every i such that 1 ≤ i ≤ n.

Since b is also a subtree of x, b1 must be a subtree of some xi with 1 ≤ i ≤ m. We now
show that, for every possible value of i, c must be a subtree of x and then, a ∧ b → c is an
implicit rule:

• If i ≥ n, then ak � xk for all k ≤ n− 1, and b1 � xi.

• If i < n, then

– ak � xk for k 6= i and 1 ≤ k ≤ n− 1

– ai � an � xn

– b1 � xi

In both cases, c � x, and we are done.

To show the other direction, let us suppose that a does not have a maximum component
which is a subtree of b1. We will show that, in this case, there are two different minimal
common supertrees of a and b. Then, by Lemma 4.2, we will get the desired conclusion. The
previous condition on maximal components can be split into two possibilities:

1. Tree a does not have a maximum component. By Lemma 4.1, there must be two maximal
components of a which are incomparable, let us say ai and aj . Now we claim that the two
trees c and d in the following figure are two different minimal common supertrees of a and b:

...
a a a1 nj

...
a a an1 i+ +

d:

ia b1 ja 1b

c:

In the first place, we show that c and d are different. Suppose they are equal. Then, since b1

cannot be a subtree of any ak, 1 ≤ k ≤ n (because a and b are assumed to be incomparable),
the components containing b1 must match. But then, the following multisets (the rest of the
components in c and d) must be equal:

{al | 1 ≤ l ≤ n ∧ l 6= i} = {al | 1 ≤ l ≤ n ∧ l 6= j}.

But the equality holds if and only if ai = aj , which is false. Then c 6= d.

Second, we show that c contains a and b minimally. Call c1, . . . , cn to the components of
c in the same order they are displayed: ck = ak for all k ≤ n except for k = i, for which

Mining Implications from Lattices of Closed Trees

ck = ai ⊕ b1. Suppose now that we delete a leaf from c, getting c′ ≺ c, whose components
are c′1, . . . , c

′
n (which are like the corresponding ck’s except for the one containing the deleted

leaf). We will see that c′ does not contain a or b by analyzing two possibilities for the location
of the deleted leaf, either (a) in the component ci = ai ⊕ b1 or (b) in any other component:

(a) Suppose that the deleted leaf is from ci = ai ⊕ b1 (that is, c′i ≺ ci). Then, either ai 6� c′i
or b1 6� c′i. In the case that b1 6� c′i, we have that b 6� c′ since b1 is not included in
any other component. So, suppose that ai 6� c′i. In this case, consider the number s of
occurrences of ai in a. Since ai is a maximal component, the occurrences of ai in a are
the only components that contain ai as a subtree. Therefore, the number of components
of c that contain ai is exactly s, but it is s − 1 in c′ due to the deleted leaf in ai ⊕ b1.
Then, a 6� c′.

(b) Suppose now that the deleted leaf is from ck for k 6= i. In this case, it is clear that
ak 6� c′k, but we must make sure that a 6� c′ by means of some mapping that matches ak

with a component of c′ different from c′k. For contradiction, suppose there exists such a
mapping, that is, for some permutation π from the symmetric group of n elements, we
have am � c′π(m) for every m ≤ n. Let l be the length of the cycle containing k in the
cycle representation of π (so, we have πl(k) = k, and has a value different from k for
exponents 1 to l − 1). We have that

ak � aπ(k) � aπ2(k) � . . . � aπl−1(k)

since for every am in the previous chain except the last one, if π(m) 6= i, then am �
c′π(m) = aπ(m); while if π(m) = i, then am � aπ(m) because ai is a maximum
component.

From the previous chain of containments, we conclude that ak � aπl−1(k). But aπl−1(k) �
c′πl(k) = c′k. Putting it together, we get ak � c′k, which is a contradiction. Therefore,
a 6� c′.

Now, from (a) and (b), we can conclude that c is a minimal common supertree of a and b.
Obviously, the same property can be argued for d in a symmetric way, and since c and d are
different, Lemma 4.2 implies that a and b cannot have implicit rules.

2. Tree a has maximum components but they are not subtrees of b1. We consider now the
following trees:

1a a an−1 bana1 1bn1

...
+

e:

...

f:

We will show (a) that tree e is a minimal common supertree of a and b, and (b) that tree f is a
common supertree of a and b and does not contain e. From (a) and (b), we can conclude that a
and b must have two different minimal common subtrees. Take e as one of them. For the other
one, let f ′ be a tree obtained from f by deleting leaves until it is minimal (that is, deleting one
more leave would not contain a or b). Since e 6� f (from point (b)), it holds that e 6� f ′. On
the other hand, if we had f ′ � e, since e is minimal, we would have e = f ′, and then e � f ,

J. Balcázar et al.

which contradicts point (b). Therefore, e and f ′ must be two incomparable minimal common
supertrees of a and b, and the theorem follows. To complete the proof, it is only left to show:

(a) Tree e is a minimal common supertree of a and b. Note that the proof in previous case
1, showing that c is a minimal common supertree of a and b, applies to e as well. The
argument for c was based on the maximality of ai, but an is maximum in e, and then it
is also maximal, so the proof applies.

(b) Tree f is a common supertree of a and b, and does not contain e. Clearly by definition,
f is a common supertree of a and b. Now, we will argue that e 6� f . For this inclusion
to be true, an ⊕ b1 should be a subtree of some component of f . It cannot be a subtree
of one of the ak’s components (k ≤ n) since then b1 � ak and b � a, which is false. On
the other hand, an ⊕ b1 cannot be a subtree of b1 neither, because that would mean that
an � b1, which is false in this case. Therefore, f does not contain e.

Since we have proved the existence of two minimal common supertrees also for this case,
a new application of Lemma 4.2 completes the proof.

Corollary 4.5 Two trees with one component each have implicit rules if and only if they are
comparable.

In fact, one fragment of the argumentation of this theorem can be also applied directly as
well to some cases that do appear in practice:

Definition Given two trees a, b, we denote by a + b the tree built joining the roots of all
components of a and b to a single root node.

Definition Given two trees a and b, tree a with components a1, · · · , an and tree b with com-
ponents b1, · · · , bk, and n ≥ k, we denote by a] b the tree built recursively by joining the trees
ai] bi for 1 ≤ i ≤ k, and ai for k < i ≤ n, to a single root node. If b has only a node then
a] b = a. In case that n < k, a] b is defined as b] a.

Proposition 4.6 The rule a ∧ b → c is not an implicit rule if c 6� a + b or c 6� a] b.

Proof If c 6� a + b or c 6� a] b, then a + b or a] b are supertrees of a and b that are not
supertrees of c and by the definition of implicit rule, the rule a ∧ b → c is not implicit.

Using Proposition 4.6, we have implemented an additional recursive heuristic that can be
explained as follows: for every rule a ∧ b → c we build a + b and a] b and if we realize that
one of them is not a supertree of c, then the rule is not implicit.

5 Experimental Validation
We tested our algorithms on two real datasets. The first one is CSLOGS Dataset (Zaki

(2002)). It consists of web logs files collected over one month at the Department of Computer

Mining Implications from Lattices of Closed Trees

Science of Rensselaer Polytechnic Institute. The logs touched 13.361 unique web pages and
CSLOGS dataset contains 59.691 trees. The average size of the trees is 12.

The second dataset is Gazelle, a dataset from KDD Cup 2000 (Kohavi et al., 2000). This
dataset is a web log file of a real internet shopping mall (gazelle.com), has size 1.2GB and
contains 216 attributes. We use the attribute ’Session ID’ to associate to each user session
a unique tree. The trees record the sequence of web pages that have been visited in a user
session. Each node tree represents a content, assortment and product path. Trees are not built
using the structure of the web site, instead they are built following the user streaming. Each
time a user visits a page, if he has not visited it before, we take this page as a new deeper node,
otherwise, we backtrack to the node this page corresponds to, if it is the last node visited on a
concrete depth. The resulting dataset consists of 225.558 trees.

On these datasets, we have computed association rules following our method. We have
then analyzed a number of issues. First, we have checked how many redundant rules could
be avoided by some more sophisticated rule production system along the lines of a Duquenne-
Guigues basis; however, the structure of these datasets leads to little or no redundancy for this
reason, and we omit further discussion of this consideration.

Then, we have implemented an implicit rule detection step based on all the criteria de-
scribed in the previous section. Timing considerations are rather irrelevant, in that the time
overhead imposed by this implicit rule detection step is reasonably low. We compare the num-
ber of rules obtained, the number of implicit and not implicit detected rules, and the number
of non implicit rules. Figure 1 shows the results for the CSLOGS dataset, and the Gazelle
dataset. We observe that when the minimum support of the closed frequent subtrees decreases,
the number of rules increases and the number of detected rules decreases. The number of de-
tected rules depends on the dataset and on the minimum support. As an example, our method
detects whether a rule is implicit or not in 91% of the rules obtained from CSLOGS dataset
with a support of 7.500, and 32% of the rules obtained from Gazelle Dataset with a support of
500. The number of non implicit rules are more than 75% in the two datasets.

6 Conclusions
We have developed, on the basis of a closure operator on sets of trees for a given dataset,

studied in our previous work, a new form of implication (or deterministic association rule)
among trees. We have presented a mathematical characterization and proposed a method to
obtain a basis.

Then we have discussed why the particular combinatorics of our application of the basis
still lead to redundant information in the output: implicit rules that are constructed by our
method but, actually, due to the combinatorics of the trees, will hold in all datasets and speak
nothing about the dataset under analysis.

Whereas a complete characterization of such redundancies is, so far, out of the scope of our
work, we have been able to provide an exact characterization for one particular case, where one
of the two trees involved in the antecedents has a single component. We have demonstrated,
through an implementation and an empiric analysis on real-life datasets, that our development
offers a good balance between mathematical sophistication and efficiency in the detection of
implicit rules, since with just our characterization and two heuristics we catch a large ratio of
implicit rules.

J. Balcázar et al.

0

200

400

600

800

5000 10000 15000 20000 25000 30000
Support

CSLOGS

Number of rules
Number of rules not implicit

Number of detected rules

0

100

200

300

400

500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Support

GAZELLE

Number of rules
Number of rules not implicit

Number of detected rules

FIG. 1 – Real data experimental results on CSLOGS and Gazelle datasets

References

Balcázar, J. L., A. Bifet, and A. Lozano (2006). Intersection algorithms and a closure operator
on unordered trees. In MLG 2006, 4th International Workshop on Mining and Learning with
Graphs.

Balcázar, J. L., A. Bifet, and A. Lozano (2007a). Mining frequent closed unordered trees
through natural representations. Proceedings of the 15th International Conference on Con-
ceptual Structures (ICCS 2007).

Balcázar, J. L., A. Bifet, and A. Lozano (2007b). Subtree testing and closed tree mining
through natural representations. Workshop Advances in Conceptual Knowledge Engineer-
ing.

Balcázar, J. L. and G. C. Garriga (2007a). Characterizing implications of injective partial
orders. In Proceedings of the 15th International Conference on Conceptual Structures (ICCS

Mining Implications from Lattices of Closed Trees

2007).
Balcázar, J. L. and G. C. Garriga (2007b). Horn axiomatizations for sequential data. Theoreti-

cal Computer Science 371(3), 247–264.
Chi, Y., R. Muntz, S. Nijssen, and J. Kok (2005a). Frequent subtree mining – an overview.

Fundam. Inf. 66(1-2), 161–198.
Chi, Y., Y. Xia, Y. Yang, and R. Muntz (2005b). Mining closed and maximal frequent sub-

trees from databases of labeled rooted trees. IEEE Transactions on Knowledge and Data
Engineering 17(2), 190–202.

Kohavi, R., C. Brodley, B. Frasca, L. Mason, and Z. Zheng (2000). KDD-Cup 2000 organizers’
report: Peeling the onion. SIGKDD Explorations 2(2), 86–98.

Pfaltz, J. L. and C. M. Taylor (2002). Scientific knowledge discovery through iterative trans-
formations of concept lattices. In Workshop on Discrete Math. and Data Mining at SIAM
DM Conference, pp. 65–74.

Termier, A., M.-C. Rousset, and M. Sebag (2004). DRYADE: a new approach for discovering
closed frequent trees in heterogeneous tree databases. In ICDM, pp. 543–546.

Wild, M. (September 1994). A theory of finite closure spaces based on implications. Advances
in Mathematics 108, 118–139(22).

Zaki, M. J. (2002). Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining.

Résumé
Nous proposons une manière à extraire des règles d’association de haute confiance d’en-

sembles de données se composant d’arbres non étiquetés. Les antécédents sont obtenus par
un calcul apparenté à un transversal d’hypergraphe, tandis que les conséquents se suivent
d’une application des opérateurs de fermeture sur les arbres non étiquetés développés dans
des travaux précédents des auteurs. Nous discutons en plus détail le cas des règles trivialement
valides, puisque celles-ci sont plus complexes que dans le cas des itemsets, étant donné que
nous ne travaillons plus avec un trellis.

