
OLAP query suggestion and discovery driven analysis

Patrick Marcel

Université François Rabelais de Tours, LI campus de Blois, France

Abstract. Interactive analysis of datacube, in which a user navigates a cube
with a sequence of queries to find and understand unexpected data, is often te-
dious. To better support this process, we propose in this paper to connect two
techniques proposed earlier in this domain. These techniques are, on the one
hand, discovery driven analysis, that guides the user towards regions of the cube
they will find of interest, and on the other hand, query recommendation, that
takes advantage of what the other users did during former analyses. Benefit-
ing from these techniques we propose a framework for recommending OLAP
queries to the user by taking into account what previous users found of interest
and the explanation they worked out.

1 Introduction
Context Interactive analysis of a data cube has often be described as a tedious process
whereby users interactively navigate a cube by launching a sequence of queries over a dataware-
house, what we call an analysis session (or session for short) in the following.

In a typical session, one of the queries detects something surprising and then the subsequent
queries are used to navigate the cube to explain what has been detected. But designing these
subsequent queries is often difficult since the user may have no idea of what part of the cube
he should navigate.

To cope with this, Sarawagi et al. proposed in Sarawagi et al. (1998) and subsequent work
new operators to guide the user towards unexpected data in the cube or to propose to explain
an unexpected result. We remark that these operators are applied only on query results and
they do not take into account what other users might have discovered.

On the other hand, in Giacometti et al. (2008) it is proposed to consider what other users
did during former sessions on the cube to suggest (or recommend) a query to the user. But in
this work no emphasis is put on what former users may have found interesting.

Problem In this present paper, we propose to bridge the gap between these two domains,
that is to answer the question: How to suggest to the user queries that lead him to interesting
parts of the cube, by taking advantage of what other users found interesting?

Contribution To answer this question, we propose a framework for recommending OLAP
queries that is based on the following principle:



• Every analytical session on a datacube is logged and each of these sessions is associated
with a context, which represents the problem, that is the unexpected data, the session
investigates, and with a goal, which represents the outcome of the session. This is done
especially by an offline preprocessing of the log that uses some of the operators proposed
in the area of discovery driven analysis of datacubes.

• A context is assigned to the current session (that is to the user for whom the system has
to recommend a query) that allows to find in the log the sessions that tried to investigate
a problem of a similar nature.

• If there exists in the log a session with a context similar to the current session, then
the outcome of this logged session is proposed as a recommendation. Otherwise, it is
proposed to the user to see the context of a logged session that is similar to his session
in terms of the sequence of queries composing it.

This framework can be seen as an extension of our previous work on OLAP query recom-
mendation Giacometti et al. (2008) Note that this paper is a position paper in the sense that its
goal is to propose and discuss an original idea for enhancing interactive analysis of datacube.
Further research and experimentation need to be conducted in order to validate the idea. This
is briefly discussed in the conclusion.

Outline A short motivating example is given in the next section. Section 3 reviews the
works underlying the framework we propose, namely discovery driven analysis of datacube
and OLAP query suggestion, and discusses some related work done in information retrieval
that we have used to connect discovery driven analysis with OLAP query recommendation.
Preliminary definitions are given in Section 4 and the contribution is detailed in Section 5.
Section 6 concludes the paper and exposes future work.

2 Motivating example

In this section we illustrate with a simple example the basic idea under our framework. It
is assumed that the reader is familiar with the MDX query language (Microsoft Corporation
(2008)).

Consider an OLAP server used by several users. Each user can open a session on the server
to navigate the cube by launching a sequence of queries. The server logs these sessions, i.e.,
logs the sequences of queries launched during each session.

Imagine now a new session, called the current session, is opened by a user, called the
current user. For instance, the user is analyzing the sales of wines in various countries. At some
point, the user is issuing the following query to find the sales of Bordeaux and Bourgognes in
US:

SELECT {[French wines].[Bordeaux].Children,[French wines].[Bourgognes].Children}
ON ROWS,
[US].[All Members] ON COLUMNS

FROM [SalesCube]
WHERE [Measures].[Sales]



Based on the result of this query, the system can search the log to find among the sessions
similar to the current session the queries whose result reveals something unexpected w.r.t. what
the user is currently observing. One of these queries can then be recommended to the user.

For instance, suppose the systems finds the sessions of some other users who analyzed
earlier the sales of wines. It suggests the following query, that is present in one of these
sessions, that displays the sales of french wines in US in 2004 and 2005:

SELECT [French Wines].[All Members] ON ROWS,
crossjoin([US].[All Members],{[2004],[2005]}) ON COLUMNS

FROM [SalesCube]
WHERE ([Measures].[Sales])

The system suggests this query because it displays a significant drop of sale results from
2004 to 2005.

Now suppose that the user is observing something surprising in the result of the current
query (this may be so because he has chosen to evaluate the query recommended in the case
described above). The system can search in the log for sessions having tried to explain some-
thing similar. Among these sessions, the system can look for the query that explains this
surprising result the best and recommend it to the user.

Continuing with our running example, suppose that the current user has evaluated the query
recommended by the systems and is observing this drop of sale results from 2004 to 2005. Then
the system suggests to the user the following query, found in one of the sessions that analyzed
the sales of wines. This query displays the unit sold of white Bordeaux for the fourth quarters
of both 2005 and 2004 in the south of the US:

SELECT {[2005].[Q4],[2004].[Q4] } ON ROWS,
[US].[South].Children ON COLUMNS

FROM [Sales]
WHERE ([Measures].[Unit sold],[French Wines].[Bordeaux].[White wines])

The systems suggests this query because it displays that very few white Bordeaux were
sold in the fourth quarter of 2005 in the southern states. This can explain the drop of sale
results the user observed earlier.

3 Related work
In this section we present the salient features of the works that inspired the framework

described in the next section.

3.1 Recommending or anticipating OLAP query
To the best of our knowledge, Giacometti et al. (2008) is the only work that proposes

a framework and a system for recommending OLAP queries to a user by taking advantage
of former analytical sessions. The framework relies on the following principle, illustrated in
Figure 1:

1. A preprocessing step: The query log of the OLAP server is preprocessed in order to
cope with sparsity. As, for most of the queries in this log it is unlikely that this query is
asked many times, queries that are close to one another are grouped. This preprocessing
is done offline.



2. A matching step: The query log is examined in order to find a set of sessions that match
(i.e., that are closest to) the current session.

3. A prediction step: The set of sessions matching the current session is used to suggest
what the forthcoming query of the current session could be. A set of candidate queries
is obtained.

4. A ranking step: The candidate queries are ranked so as to present to the user the most
relevant queries first.

FIG. 1 – Overview of the generic framework

This framework is generic in the sense that each step can be parametrized by a specific
function to preprocess, match, predict or rank. An instantiation of this framework is given in
Giacometti et al. (2008) that has been used to implement a prototypical OLAP query recom-
mender system. A drawback of this system is that it does not take into account what former
users might have found of interest, which can be either unexpected data or the explanation of
some unexpected data.

In what follows, we will use this generic framework and propose a particular instantiation
where this is taken into account, both for session matching and query prediction.

Note that the work of Sapia (1999, 2000) shares with our work the goal of predicting the
forthcoming OLAP query. However the main concern of this work is to prefetch data, not to
guide the user towards interesting parts of the cube.



3.2 Discovery driven analysis of OLAP data

Sarawagi et al. introduced discovery driven analysis of OLAP cube in Sarawagi et al.
(1998). This and subsequent works resulted in the definition of various OLAP operators to
support interactive exploration of data cubes. We present some of these operators next.

The DIFF operator The DIFF operator proposed in Sarawagi (1999) explores the reasons
why an aggregate is lower (or higher) in one cell compared to another. It takes as parameter
two cells va and vb, and looks into the two isomorphic subcubes Ca and Cb that detail the two
cells (i.e., that are aggregated to form the observed va and vb). As a result, it summarizes the
differences in these two subcubes by providing the top N informative cells from the unvisited
part of the cube.

In Sathe and Sarawagi (2001) a RELAX operator has been proposed that can be thought of
as opposite of the DIFF operator, in that RELAX summarizes exceptions by rolling-up whereas
DIFF summarizes differences by drilling down.

The INFORM operator In Sarawagi (2000), an INFORM operator is used to find parts
of the cube a user will find most surprising based on what the user already knows about the
data. The idea in that paper was to adapt the Maximum Entropy Principle to OLAP. The
user’s expectation is computed by finding a model of what the user has not visited yet that is
consistent with all the facts already known (i.e., the cells viewed earlier in the session) and
otherwise as uniform as possible. Then the differences between the expected result and the
actual result can guide the user towards problematic cases hidden in detailed data.

Note that both DIFF and INFORM are slightly different than the other classical OLAP
operators, in the sense that they do not produce a cube nor a cross-tab as a result. Instead, they
provide what can be thought of as a list of cells. In what follows we consider that the signature
of these operators are: DIFF is applied on a set of cells and on two particular cells of this set.
INFORM is applied on a set of cells. Both operators output a set of cells.

Two recent works use a data mining approach to inform the user of potentially interesting
regions of a cube by either automaticaly detecting interesting cells Cariou et al. (2007) or
proposing interesting drill paths Cariou et al. (2008). In the former case, the goal is simply to
highlight in a given query result the cells whose measure deviates the most from a theoretical
value computed under independence model hypothesis. In the latter case however, the goal is
very similar to that of Sarawagi (2000) and can be seen as recommending drill down queries to
the user. This approach does not take into account former explorations and thus is a promising
candidate to be used instead of the INFORM operator in the framework we propose in Section
5.

It is to be noted that discovery driven analysis has been adapted to document search, like
in e.g., Dash et al. (2008). In this work, facets (i.e., attributes) instances (i.e., attribute values)
are associated with documents and documents are searched with queries using both keywords
and facet instances. A model of the distribution of facets in the documents is computed and
this expectation is compared to the actual search result. If the search result is large, the system
presents to the user the part of the result that is found the most surprising w.r.t. the expectation.



3.3 Session properties used in Information Retrieval
The idea of using former sessions to improve current search is very popular in Informa-

tion Retrieval (Adomavicius and Tuzhilin (2005)) and Web Usage Mining (Spiliopoulou et al.
(2000)).

In recent works, properties of the session can be inferred to support subsequent searches.
For instance, in Downey et al. (2008), the information goal of a session is defined as the last
URL visited during the session or alternatively the last click on a search engine result page.

In Parikh and Sundaresan (2008) in the domain of E-commerce, the session goal is a par-
ticular event occurring in the session. In this case of the Ebay site, the goal of a session is a
buy event. This allows to enrich all the sessions (and especially the queries of the sessions)
with the description of the item bought, which is called the context of the session. The authors
show how defining the context of a session helps recovering from null result in subsequent
searches, provides a better understanding of the queries in the session, or helps generating
recommendations.

Note that there is a recent interest for trying to combine information retrieval and OLAP.
For instance, in Wu et al. (2007) the authors propose to query a datacube with only a set of
keywords. Among the potential answers to the query, only the subcubes that are the most
surprising are presented to the user.

To the best of our knowledge, no work has been done on how to compute properties of
former OLAP session and take advantage of this properties to improve the current analysis.

3.4 Problem statement
This paper proposes to connect the ideas stemming from these different areas. More pre-

cisely, we will try to answer the following questions:

• Can we identify the goal or context of an OLAP session?

• Can we use this information to generate recommendations?

4 Basic definitions
In this section we give the basic definitions and notations underlying our framework.

Cubes, dimensions, members, cells, cell references An N -dimensional cube C is defined
as the classical N + 1 relation instances of a star schema, one relation instance for each of the
N dimensions and one relation instance for the fact table.

Given a particular dimension table, a member is a value in this table. Given a fact table, a
cell is a tuple of this table.

Given an N -dimensional cube C, a cell reference (or reference for short) is an N -tuple
〈r1, . . . , rN 〉 where ri is a member of the ith dimension, for all i ∈ [1, N ].

Query In this paper we consider as in Giacometti et al. (2008) that a query is a set of refer-
ences. We denote by res(q) the set of cells being the result of the query q and if Q is a set of
queries, then res(Q) denotes the union of the res(q) such that q ∈ Q.



Query similarity In what follows, sim(q, q′) is any function computing a similarity score
for q and q′. We do not propose a specific algorithm for computing such a similarity here.
The reader is redirected to Giacometti et al. (2008) or Negre (2009) for two examples of func-
tions computing a distance between MDX queries that can be used to obtain a similarity score
between OLAP queries. In both of these works, as queries are considered to be sets of cell
references, the distance between two queries is computed by using the Hausdorff distance be-
tween sets Hausdorff (1914). This distance allows to compare two sets based on a distance
between the elements of the sets. Informally, two sets are closed if every element of either
set is closed to some element of the other set. In Negre (2009), it is proposed that the dis-
tance between elements is a distance between cell references that relies on a distance between
members. The distance between two members in a hierarchy is the length of the shortest path
between these members in the hiearchy.

OLAP session and log An OLAP session is a sequence of queries. We note q ∈ s the fact
that a query q appears in a session s. An OLAP query log, or log for short, is a set of OLAP
sessions. We note q ∈ L the fact that a query q appears in some session of a log L.

OLAP session context and OLAP session goal The context of a session is an OLAP query
that appears in the session. If s is a session, we denote its context by cxt(s).

The goal of a session is an OLAP query that appear in the session. The goal of a session
must be different from its context. If s is a session, we denote its goal by goal(s).

5 Framework
We now present the framework for recommending OLAP query using discovery driven

analysis operators. We start by giving the principle and then detail every step.

5.1 Principle
The basic idea behind our framework is to infer two properties of each session. These two

properties are:

• A context: The context of a session is the query that leads to the most surprising data
when compared to the other queries of the session.

• A goal: Given a session and its context, the goal of the session is the query that leads to
the best explanation of the context.

These properties are used for recommending queries in the following way: If the current
session has a context similar to that of some sessions in the log, then the recommended query is
chosen among the goals of these sessions. If there is no session in the log that shows a context
similar to the current session, then a query of the log which result is surprising w.r.t. the former
queries in the current session is proposed.

5.2 Preprocessing
We now explain how a context and a goal are associated with each session.



Preprocessing the log The log are preprocessed in order to associate with each session a
context and a goal. Note that this preprocessing is done offline (whereas the computation of
recommendation is done on-line).

First, candidate contexts are detected. Every query q of the log is associated with a score
unexpected(q) computed as follows:

1. for each query q of a session s

2. let Q be the set of queries of s preceding q

3. compute the set C = INFORM(res(Q))

4. unexpected(q) is the number of cell references of C in res(q)

Then, candidate goals are detected. Every pair (q, q′) of queries of the session is associated
with a score explains(q′, q) computed as follows:

1. for each query q of a session s

2. for each pair of cells (c, c′) of q such that the difference exceeds a given threshold

3. compute the sets Cc,c′ = DIFF (res(q), c, c′)

4. for each successors q′ of q in s

5. explains(q′, q) is the maximal number of cell references of the Cc,c′ in res(q′)

All queries can be ranked according to how unexpected their result is w.r.t. the former
queries. The context is then the most unexpected query q for which there exists a query q′ in
the session that explains it (i.e., such that there is a non null explains(q′, q) score). The goal
being then the query that maximizes this score. Formally, for a session s,

• cxt(s) = argmax({unexpected(q)|q ∈ s ∧ ∃q′ ∈ s, explains(q′, q) 6= 0}) and

• goal(s) = argmax1({explains(q′, cxt(s))|q′ ∈ s}).

Obviously the scores can be 0. In that case:

• If for all queries q, unexpected(q) = 0 but there exists a pair (q, q′) such that
explains(q, q′)! = 0, then we use the pair (q, q′) that maximizes that score for goal
and context respectively.

• If there exists a query q such that unexpected(q)! = 0 but for all pairs (q, q′),
explains(q, q′) = 0 then the context is the query q maximizing unexpected(q) and
the goal is a query artificially constructed from INFORM(res(q)). For instance, it
can be the query which result is the most surprising cell of INFORM(res(q)).

• If all scores are null, then the session cannot be used with the matching and recommend-
ing functions described below. Thus it is simply not taken into consideration.



Preprocessing the current session A context is assigned to the current session by using
the same principle as above. As long as the session grows in term of queries, the context is
updated.

5.3 Session matching
Two sessions can be considered similar if they are similar sequences of queries. In Gia-

cometti et al. (2008) we use a technique stemming from approximate string matching (see e.g.,
Navarro (2001)) to compute a similarity score between two sessions. Given two sequences s
and s′, Approximate String Matching is the problem of matching the sequences allowing er-
rors. The matching relies on the computation of a distance between the sequences, which is the
minimal cost of the sequences of operations transforming s into s′. The classical Levenshtein
(or edit) distance Levenshtein (1966) is commonly used, that can be thought of as the minimal
number of insertions, deletions or substitutions to make the two sequences equal. Let’s call
this score sseq(s, s′) for two sessions s and s′.

Now, even though two sessions s and s′ are not similar in the sense that sseq(s, s′) does
not exceed a given threshold, s and s′ can have a similar context, in the sense that in both s
and s′ the user tries to explain a particular surprising observation.

Thus we can compute another similarity score scxt for the two sessions s and s′ in the
following way: scxt(s, s′) = sim(cxt(s), cxt(s′)) where sim is the function computing the
similarity of two queries.

5.4 Query suggestion
We now explain how recommendations are computed.

Operators for query suggestion We introduce two operators for recommending a query.
Let L be a set of sessions, s be a session and q be a query,

• understand(q, s, L) = q′ ∈ L such that q′ explains q the best

• surprise(q, s, L) = q′ ∈ L such that q′ shows the most unexpected result w.r.t. q

Note that understand is not DIFF and surprise is not INFORM since understand and
surprise produce a query as output, and this output has to belong to a set of existing queries.

Recommendation Given a preprocessed log L and a session s with the current query q,
recommendations are computed with the following algorithm:

if unexpected(q) exceeds a given threshold then

recommend understand(q, s, L)

otherwise

recommend surprise(q, s, L)



Implementing the operators There are many ways of implementing the two operators un-
derstand and surprise. We propose here a simple implementation. Let L be a log, s be the
current session and q be the current query:

• For understand(q, s, L): Let S be the set of sessions s′ from L such that scxt(s, s′)
exceeds a given threshold. Let G be the set of goals of the sessions in S, i.e., G =
{goal(s′)|s′ ∈ S}.
Then understand(q, s, L) = argmax1({explains(q′, q)|q′ ∈ G}).

• For surprise(q, s, L): Let S be the set of sessions s′ from L such that sseq(s, s′)
exceeds a given threshold. Let C be the set of contexts of the sessions in S, i.e.,
C = {cxt(s′)|s′ ∈ S}.
Then surprise(q, s, L) = argmax1({sim(q′, q)|q′ ∈ C}).

5.5 Presenting the suggested queries to the user
We now explain why and how the recommender system presents more than one recom-

mended queries to the user.

Advantage of the approach The main advantage of using what other users did to improve
the current analysis is that the current user is not tied to a specific set of operations for issuing
his forthcoming queries.

For instance, suppose the user is observing something unexpected in the answer of his
current query. For his next query, he may use the DIFF operator to find an explanation for
what he is observing. In that case, he gets one and only one explanation, that is the output
of the DIFF operator. Alternatively, the user may choose to issue the query recommended by
the system, that is a query whose result another user have obtained to explain the interesting
observation. If the current user is not happy with the result of this recommended query, the
system can then suggest another query that has been computed using the same process.

Ranking recommendations Suppose that the output of the understand or surprise operators
consists of more than one query. Then, instead of proposing only one recommendation to the
user, we can rank these queries so that they all can be proposed in a given order. Ranking
functions are proposed in Giacometti et al. (2008) and Negre (2009). In Giacometti et al.
(2008), recommendations are ranked according to how similar they are to the current queries.
In that case again the Hausdorff distance is used to compute the similarity. In Negre (2009),
the ranking is computed w.r.t. a user profile by using the ordering on MDX queries proposed
in Bellatreche et al. (2005).

6 Conclusion
In this paper we propose a framework for recommending OLAP queries to the user by

taking into account what other users found of interest (the context of their session) and the ex-
planation they worked out (the goal of their session). This framework is designed by adapting



the framework proposed in Giacometti et al. (2008) and incorporating the operators proposed in
the domain of discovery driven analysis of datacube in Sarawagi (1999) and Sarawagi (2000).

Our future work include:

• The implementation of the proposed framework by adapting the prototype used in Gia-
cometti et al. (2008). This implementation will allow to validate the approach in the two
following ways:

1. Firstly by conducting experimentation questionning the impact of the various thresh-
olds needed as parameters of our algorithms (cf. Section 5).

2. Secondly by using the prototype on real data and obtaining feedback from OLAP
users. In that sense, we are currently connecting our prototype to the Mondrian
OLAP server (Pentaho Corporation (2009)) for suggesting MDX queries (Mi-
crosoft Corporation (2008)).

• The investigation of the importance of the path followed by the user during a session.
More precisely, we would like to answer the following questions: What would be the
impact of having more than one context or goal for a session? Are the intermediate
results found in a session before the goal relevant for computing recommendations?

References
Adomavicius, G. and A. Tuzhilin (2005). Toward the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data
Eng. 17(6), 734–749.

Bellatreche, L., A. Giacometti, P. Marcel, H. Mouloudi, and D. Laurent (2005). A personal-
ization framework for olap queries. In DOLAP, pp. 9–18.

Cariou, V., J. Cubillé, C. Derquenne, S. Goutier, F. Guisnel, and H. Klajnmic (2007). Built-in
indicators to automatically detect interesting cells in a cube. In DaWaK, pp. 123–134.

Cariou, V., J. Cubillé, C. Derquenne, S. Goutier, F. Guisnel, and H. Klajnmic (2008). Built-in
indicators to discover interesting drill paths in a cube. In DaWaK, pp. 33–44.

Dash, D., J. Rao, N. Megiddo, A. Ailamaki, and G. M. Lohman (2008). Dynamic faceted
search for discovery-driven analysis. In CIKM, pp. 3–12.

Downey, D., S. T. Dumais, D. J. Liebling, and E. Horvitz (2008). Understanding the relation-
ship between searchers’ queries and information goals. In CIKM, pp. 449–458.

Giacometti, A., P. Marcel, and E. Negre (2008). A framework for recommending OLAP
queries. In DOLAP, pp. 73–80.

Hausdorff, F. (1914). Grundzüge der Mengenlehre. Von Veit.
Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and rever-

sals. Soviet Physics Doklady 10(8), 707–710.
Microsoft Corporation (2008). Multidimensional expressions (MDX) reference. Available at

http://msdn.microsoft.com/en-us/library/ms145506.aspx.
Navarro, G. (2001). A guided tour to approximate string matching. ACM Comput. Surv. 33(1),

31–88.



Negre, E. (2009). Recommandations personnalisées de requêtes MDX. In Cinquième journées
francophones sur les Entrepôts de Données et l’Analyse en ligne.

Parikh, N. and N. Sundaresan (2008). Inferring semantic query relations from collective user
behavior. In CIKM, pp. 349–358.

Pentaho Corporation (2009). Mondrian open source OLAP engine. Available at
http://mondrian.pentaho.org/.

Sapia, C. (1999). On modeling and predicting query behavior in OLAP systems. In DMDW,
pp. 2.1–2.10.

Sapia, C. (2000). Promise: Predicting query behavior to enable predictive caching strategies
for OLAP systems. In DaWaK, pp. 224–233.

Sarawagi, S. (1999). Explaining differences in multidimensional aggregates. In VLDB, pp.
42–53.

Sarawagi, S. (2000). User-adaptive exploration of multidimensional data. In VLDB, pp. 307–
316.

Sarawagi, S., R. Agrawal, and N. Megiddo (1998). Discovery-driven exploration of OLAP
data cubes. In EDBT, pp. 168–182.

Sathe, G. and S. Sarawagi (2001). Intelligent rollups in multidimensional OLAP data. In
VLDB, pp. 531–540.

Spiliopoulou, M., J. Srivastava, R. Kohavi, and B. M. Masand (2000). Webkdd 2000 - web
mining for e-commerce. SIGKDD Explorations 2(2), 106–107.

Wu, P., Y. Sismanis, and B. Reinwald (2007). Towards keyword-driven analytical processing.
In SIGMOD Conference, pp. 617–628.

Résumé
L’analyse interactive de cube de données, où l’utilisateur navigue à l’aide d’une séquence

de requêtes un cube pour trouver et expliquer des données inattendues, est souvent fastidieuse.
Pour améliorer ce processus, nous proposons dans ce papier de rapprocher deux techniques
proposées précédemment dans ce domaine. Ces techniques sont d’une part l’analyse pilotée
par la découverte, où l’utilisateur est guidé vers des régions du cube supposées intéressantes,
et d’autre part la recommandation de requêtes, qui tire profit de ce que les autres utilisateurs
on fait lors d’analyses précédentes. A l’aide de ces techniques nous proposons un cadre pour la
recommendation de requêtes OLAP à un utilisateur en prenant en compte ce que les utilisateurs
précédents auront trouvé intéressant et la manière qu’ils auront eu de l’expliquer.


