
Graph grammar-based transformation for context-aware
architectures supporting group communication

Ismael Bouassida Rodriguez∗,∗∗, Christophe Chassot∗,∗∗, Mohamed Jmaiel∗∗∗

∗CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France
∗∗Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077Toulouse, France

bouassida@laas.fr,chassot@laas.fr
∗∗∗Uiversity of Sfax, ReDCAD Research Unit, B.P. 1173, 3038 Sfax, Tunisia

mohamed.jmaiel@rnu.enis.tn

Abstract. Handling context-aware dynamically adaptable architectures con-
tributes to the design of self-configuring software systems. This kind of problem
for communicating systems is even more challenging since adaptation should
address simultaneously the different levels. This is necessary for handling both
changes in the low level constraints and evolutions in the high level require-
ments. In this paper, we address this problem by providing a model-based,
rule-oriented approach that supports the adaptation process based on a run-time
transformation of the system architecture. Such architecture may represent the
different possible service compositions and the associated architectural configu-
rations. We consider the multi-level models of the communicating system archi-
tecture and the intra-level architecture transformationsas the elementary adap-
tation actions. We handle consistently the related inter-level adaptation actions
by considering additional architectural relationships viewing the lower level ar-
chitecture as a refinement of the upper level.We provide the algorithms char-
acterizing the multi-level architecture-based adaptation process. We then de-
velop a rule-oriented implementation using graph grammar and handling archi-
tectural transformations as graph transformation rules. We consider Emergency
Response and Crisis Management Systems (ERCMS) as a case study from the
more general group communication systems to which our results apply.

1 Introduction

Designing and implementing self-adaptive communicating systems is a complex task,
which may be addressed via model-based design approaches associated with automated man-
agement techniques for dynamic architectural adaptability. In self-adaptable applications,
components are created and connected, or removed and disconnected during the execution.
The architectural changes respond to constraints of the communication and resources exe-
cution capacities variations. Providing solutions for distributed software systems supporting
group communication requires managing dynamically evolving group membership and dy-
namically connecting deployment nodes.



Graph grammar-based transformation for context-aware architectures

For a number of group communication-based applications, deciding such a reconfiguration
for one or more levels of interaction and distribution will depend on the situation of a run-time
changing context.

Providing generic solutions for automated self-reconfiguration in group communication
support systems can be guided by rule-based reconfigurationpolicies. This is the approach we
adopt in this paper. In order to guarantee the architecture reconfiguration correctness we use
formal techniques.

In particular, graphs represent an appropriate mean to specify respectively static and dy-
namic architectures aspects. The solution we present in this paper, is based on graph grammar
theories. It handles architectural refinement as graphs where vertices are assimilated to soft-
ware services and components. It provides the graph transformation rules allowing to handle
the deployment architecture changes at run-time.

To illustrate the proposed models and their transformations, we consider a case study of
Emergency Response and Crisis Management Systems (ERCMS) involving several cooperat-
ing participants having different roles and functions. A model-based approach for adaptability
management presented in section 3. The ERCMS case study is presented in section 4. The
Graph-Grammar based rule-oriented implementation is provided in section 5. Section 6 gives
The graph grammar for architecture reconfiguration. Conclusion is provided in the last section.

2 Related work

Adaptation objectives, actions and properties are among the main facets of adaptability.
They are studied and classified in this section.

Two different adaptability views may be distinguished: thedesign time adapt-
ability Fahmy and Holt (2000); Ermel et al. (2001) and the run-time adaptability
Chang and Karamcheti(2000). For the first view, we can find design support that han-
dles the application development cycle and optimizes the resource value by insuring that the
infrastructure answering clearly and in a measurable way toactivity requirements. For the
run-time adaptabilityFriday et al.(2000) presents several adaptation techniques among which
use proxy services, change model of interaction and reorganize application structure.

Adaptation approaches are also targeting different architectural levels including Service,
Middleware and Network levels. At the first level, the Service-Oriented Architecture (SOA)
paradigm is based on dynamic services publishing and discovering . This kind of architectures
provides the possibilities to dynamically compose services for adapting applications to con-
text. Service descriptions are published, via the registry, by service providers and dynamically
discovered by service requesters.

Other frameworks are proposed to provide adaptability for the Middleware level. In
Nasser and Hassanein(2004), an adaptive framework supporting multiple classes of multi-
media services with different QoS requirements in wirelesscellular networks is proposed.
Sun et al.(2003) proposes CME, a Middleware architecture for service adaptation based on
network awareness. CME is structured as a software platformboth to provide network aware-
ness to applications and to manage network resources in an adaptive fashion. Friday et al.
(2000) applies reflection to design of Middleware adaptive platforms.Wu et al. (2001) ad-
dresses the need for adaptation in video streaming applications distributed over the Best-Effort
Internet. Several techniques have been proposed based on two mechanisms: an applicative



I. Bouassida Rodriguez et al.

congestion control, which can be implemented in several ways: rate control, rate-adaptive
video encoding, rate shaping; and error control integrating concepts such as delay-constrained
retransmissions and forward error correction.

At the Network level,Exposito et al.(2003) provides frameworks for designing Transport
protocols whose internal structure can be modified according to the application requirements
and network constraints. Adaptation actions correspond tothe replacement of a micro-protocol
by another following a plug and play approach.

The adaptation solutions suggested in the literature distinguish behavioural and architec-
tural aspects. The adaptation is behavioural (or algorithmic) when the behaviour of the adaptive
service can be modified, without modifying its structure. Standard protocols such as TCP and
specific protocols such asWu et al.(2001) provide behaviour-based adaptation mechanisms.
Behavioural adaptation is easy to implement but limits the adaptability properties.

The adaptation is architectural when the service composition can be modified
Garlan and Perry(1995); Ellis et al. (1996) dynamically. In self-adaptive applications com-
ponents are created and connected, or removed and disconnected during the execution. The
architectural changes respond to constraints related to the execution context involving, for
example, variations of communication networks and processing resources. They may also re-
spond to requirement evolution in the supported activitiesinvolving, for example, mobility of
users and cooperation structure modification.

Designing and implementing self-adaptive communicating systems is a complex task. To
handle this complexity, several studiesGanek and Corbi(2003) showed the need to lay on
model-based design approaches associated with automated management techniques.

Static architectures are described by instances of components and interconnection links.
The dynamic character of architectures requires additional description rules. Several
works have addressed the dynamic architecture description, using different approaches
Allen and Garlan(1997). In order to guarantee the architecture evolving, correctness formal
techniques are used. In particular, graphs represent a powerful expressive mean to specify re-
spectively static and dynamic architectures aspectsLeMetayer(1998); Hirsch et al.(1999). For
such approaches, graph vertices represent the software components, and the edges represent
the links between these components. Dynamic architecturesare described as graph grammars
and architecture transformation is specified and ruled using graph rewriting models. This is
also our approch here.

3 Model-based Approach for Adaptability Management

Managing self-adaptability in group communication activities requires considering several
kinds of evolving requirements and changing constraints, and lead to architectural adaptations
at different levels of the communication stack. This raisesa coordination problem which, if
not properly addressed, may conduct to inefficient or even inconsistent solutions.

Managing architectural adaptations require defining and modelling abstraction levels ded-
icated to specific parts of the whole adaptation. Distinguishing these different abstraction
levels allows designers and developers to respectively master the specification and the imple-
mentation of adaptation rules. For a given deployment configurationAn,i

1 at leveln, a set

1In the notationAn,1, n denote the level that the configurationA belongs andi the index of this configuration.



Graph grammar-based transformation for context-aware architectures

TAB . 1 – Abstract Adaptability Algorithm
1 Select the initial configuration of leveln: An,0

2 CallG_Refine() to compute the correspondent configurations at leveln − 1
3 Get context values (e.g the available power, the availablememory)
4 CallWeight_based_selection() to select the suitable configuration at leveln − 1
5 loop
6 {
7 Wait for a reconfiguration event:e
8 CallG_Reconfigure() to generates a new deployment configuration (leveln)
9 CallG_Refine() to compute the correspondent configurations at leveln − 1
10 Get context values (e.g the available power, the available memory)
11 CallDistance_based_selection() to select the suitable configuration at leveln − 1
12 }

of deployment configurationsAn−1,i
2= (An−1,1, ..., An−1,p) may be implemented at level

n − 1. Adapting the architecture to constraint changes at leveln − 1 by switching among
these multiple deployment configurations allows maintaining unchanged the n-level deploy-
ment configuration.

Moreover, when adaptation requires changes at leveln, this may need no changes at level
n− 1 if initial and new deployment configurations of leveln (e.g. changes fromAn,1 to An,2)
share common implementations (e.g.An−1,p) at leveln − 1.

3.1 Generic Graph Adaptability Algorithm

We present an algorithm (table1) and four procedures (tables2, 3, 4 and5) that handle
the refinement and the reconfiguration process. We use graph grammar-based implementation
of the reconfiguration and the refinement procedures. Generative grammars are described in
general as a classical grammar system where there is an axiom, a set of non-terminal nodes,
a set of terminal nodes, and a set of transformation rulesP , also called grammar productions.
An instance belonging to the graph grammar is a graph containing only terminal nodes and is
obtained starting from the axiom by applying a sequence of productions fromP .

We define also functions that allow selecting the suitable deployment configurations at each
step of the reconfiguration process.

3.2 Algorithm Execution

The adaptation algorithm begins by selecting and refining the initial deployment configu-
ration (table1 line 1 and 2). The procedureG_Refine() (table2) handles these two actions.

After the refinement of the initial deployment configuration, the adaptability algorithm se-
lects the optimal deployment configuration at the leveln − 1 (table1 line 4) that implements

2In the notationAn−1,i, n − 1 denote the level andi the index of then-level configuration implemented by
An−1,i.



I. Bouassida Rodriguez et al.

TAB . 2 – The Graph Refinement Procedure
1 G_Refine()
2 {
3 LetAn, An−1 be the set of deployment configurations at leveln and leveln − 1.
4 LetAn,i ∈ An, i ∈ N, be a given deployment configuration
5 ComputeAn−1,i = {An−1,j ∈ An−1 such that:

∃p1 . . . pk ∈ P : An,i
pl...pk

−−−−→ An−1,j , j ∈ N}
6 }

TAB . 3 – The Weight Based Selection Algorithm
1 Weight_based_Selection()
2 {
3 LetC denote the context attributes (e.g the available power, theavailable memory)
4 LetAn,p ∈ An, p ∈ N, be a given deployment configuration
5 SelectAn,p ∈ An, p ∈ N

6 SelectS1 = {An−1,k ∈ An−1,p, k ∈ N such that:
Weight(An−1,k) ≤ Weight(X),∀X ∈ An−1,p}

7 if card(S1) > 1
8 SelectS2 = {An−1,k ∈ S1, k ∈ N such that:

Contextaware_Cost(An−1,k, C) ≤ Contextaware_Cost(X,C),∀X ∈ S1}
9 if card(S2) > 1
10 Select any deployment configuration fromS2

11 }

the initial deployment configuration at the leveln. The refinement procedureG_Refine() (ta-
ble2) corresponds to the application of a set of grammar productionsp1 . . . pk that implement
the refinement of a deployment configuration from the leveln to leveln − 1.

The procedureWeight_based_Selection() (table3) formalizes the selection suitable ar-
chitectures. The selection is based on minimizing theWeight() defined as a generic function
independent of the context (table3 line 6). This function corresponds to the cost or to the
efficiency/performance of an architecture. For example, itcan be defined as the number of
software components by deployment node or the scope of an architecture.

TheContextaware_Cost() (table3 line 8) is a generic function that is aware of dependent
of the context (table3 line 3). This function can be related to the communication and the
resources constraints of the architecture. For example it can express the availability level of a
given resource (Bandwidth, Memory). After selecting the initial configuration, the adaptability
algorithm waits for a reconfiguration evente (table1 line 8).

When a reconfiguration event occurs, this triggers the reconfiguration procedure
G_Reconfigure() (table4). This procedure reconfigures generates a new deployment con-
figuration at leveln. In this function we use an applicationm that associates to each couple
of a deployment configurationAn,p and a reconfiguration evente a new deployment config-
urationAn,q (table 4 line 5 and 6). When a reconfiguration evente occurs, this triggers a



Graph grammar-based transformation for context-aware architectures

reconfiguration procedureG_Reconfigure() (table4). This procedure reconfigures the cur-
rent deployment configuration and generates a new deployment configuration at leveln by the
application of a sequence of grammar productionspl . . . pk. In this function we use an appli-
cationm that associates to each reconfiguration evente a sequence of grammar productions
pl . . . pk. The sequence of grammar productionspl . . . pk reconfigures the current deployment
configurationAn,i and generates a new deployment configurationAn,j .

TAB . 4 – The Graph Reconfiguration Algorithm
1 G_Reconfigure()
2 {
3 LetE denote the set of the reconfiguration events
4 LetAn,i ∈ An, i ∈ N be a given deployment configuration
5 Letm : E −→ P

e 7−→ pl . . . pk

6 ∃ a sequencepl . . . pk = m(e)
7 Apply m(e) onAn,i

8 LetAn,j the result of the application ofm(e)
}

After the reconfiguration of the initial deployment configuration, the adaptability algorithm
selects the optimal deployment configuration at leveln − 1 (table1 line 11) that implements
the deployment configuration at leveln obtained throughG_Refine().

The procedureDistance_based_Selection() (table 5) minimizes the distance between
two deployment configurations at leveln−1 both implementing the correspondent deployment
configurations at the leveln (table5 line 6) and theContextaware_Cost() (table5 line 8)
according to the context values and characteristics (table5 line 3).

The adaptability algorithm loops (table1 line 5) and waits for another reconfiguration event
that will trigger a new reconfiguration at leveln.

4 Case Study

In this section we detail the abstraction levels for adaptability management. To expose
the targeted problems and concepts and to show the usefulness of the graph-based models, we
consider the example of ERCMS. We introduce this example andgive two different execution
steps and develop the related scenarios.

4.1 Considered Abstraction Levels

For adaptability management, we consider two main abstraction levels allowing
component-to-component and service-to-service architectural properties to be described. From
a communication point of view they represent respectively,the Middleware layer and the up-
per service layers. In the following, we will refer to these two levels as: the Middleware-level
(M-level) and the Service-level (S-level).



I. Bouassida Rodriguez et al.

TAB . 5 – The Distance-Based Selection Algorithm
1 Distance_based_Selection()
2 {
3 LetC denote the context attributes (e.g the available power,theavailable memory)
4 LetAn,q the result of the reffinement ofAn,p

5 LetAn−1,p the current mapping at leveln − 1 of An,p

6 SelectS1 = {An−1,k ∈ An−1,q, k ∈ N such that:
Relative_Cost(An−1,p, An−1,k) ≤ Relative_Cost(An−1,p,X),∀X ∈ An−1,q}

7 if card(S1) > 1
8 SelectS2 = {An−1,k ∈ S1, k ∈ N such that:

Contextaware_Cost(An−1,k, C) ≤ Contextaware_Cost(X,C),∀X ∈ S1}
9 if card(S2) > 1
10 Select any deployment configuration fromS2

11 }

The S-level constitutes the highest communication level. It describes the services and their
associated requirements and constraints provided by communicating software entities exchang-
ing high level information. Such constraints may representthe incapacity of a given device to
host containers or components. A requirement may representa communication priority be-
tween or from a given group of users. Requirements and constraints may change dynamically
depending on the supported cooperative activity and its evolution. S-level entities can be in-
stantiated in different ways. For instance, they can represent the different roles the human
participants may have within the considered activity. For group communication activities, de-
pending on its role in the activity, each participant has to perform a set of given functions.
These functions are dynamically assigned to the participants according to the evolution of the
activity, considering their skills.

The M-level is viewed as a component-to-component communication level aiming at sup-
porting a given S-level architecture, considering resource-related constraints. Three roles are
distinguished: "event producers" (EP), "event consumers"(EC) and "channel managers" (CM).
Multiple producers and consumers are associated together by the same channel manager.

4.2 ERCMS Example

ERCMS-like activities involve structured groups of participants communicating to achieve
a common mission (e.g. save human lives, fight against a huge fire...).

The scenario involves different categories of mobile actors that carry different types of
communication devices. We distinguish human actors that may be professional actors with a
professional and specific communication device or occasional actors that carry a mobile device
(e.g PDAs, Phones). We distinguish also, robot actors like planes, helicopters and ground
robots. For all the actors the communication system must deal with unexpected or expected
evolution of user needs or the changes due to device/networkconstraints.



Graph grammar-based transformation for context-aware architectures

FIG. 1 – ERCMS actors

We define three different participant roles : The supervisorof the mission, the coordinators,
and the field investigators. Each group of investigators is supervised by a coordinator (Figure
1).

Each participant is associated with an identifier, a role andthe devices he/she/it uses. Each
participant performs different functions.

The supervisor’s functions include monitoring and authorizing/managing actions to be
achieved by coordinators and investigators. The supervisor is the entity which supervises the
whole mission. The supervisor waits for data from coordinators who analyse the current situ-
ation of the mission. The supervisor has permanent execution resources and high communica-
tion and storage capabilities.

Coordinators that are attached to the supervisor, have to manage an evolving group of
investigators during the mission and to assign tasks to eachof them. The coordinator has
also to collect, interpret, summarize and diffuse information from and towards investigators.
The coordinator has high software and hardware capabilities. In Figure1, we can distinguish
the robot coordinator, the plane coordinator, the firemen coordinator that manage professional
actors and The walkers coordinator (located in a watch tower) that manage occasional actors.

The investigator’s functions include exploring the operational field, observing, analyzing,
and reporting about the situation. Investigators also act for helping, rescuing and repairing.

We can distinguish different steps during the mission We give the two most representative
execution steps: “Exploration step” (for the localizationand the identification of the crisis
situation) and “Action step” (after the identification event). Initially, all investigator groups are
in the “Exploration step”. Investigators provide continuous feedbacks D to the coordinator;
they also provide periodical feedbacks P .The coordinator sends continuous feedbacks P to the
controller.

When an investigator discovers a critical situation, its group has to be reconfigured to face
this new situation. It moves to another execution step called an “Action step”. The investigator
that discovers the critical situation keeps sending both observations D and analysis P to the
coordinator. The investigator also provides analysis P to the other investigators of its group.



I. Bouassida Rodriguez et al.

Other investigators report analysis P to coordinator on thebasis of observations D transmitted
by the critical investigator. The coordinator continue sending analysis P to the investigator.

When the critical situation is resolved, the investigation group comes back to the explo-
ration step.

5 The Graph Grammar-Based Rule-Oriented Implementa-
tion

To illustrate our approach, we use here the ERCMS case study.We define three graph
grammars to implement architecture reconfiguration at the service level (n) and architecture
refinement for mapping S-level onto M-level.

In both cases, the proposed grammars generalize the case study by considering a variable
number of investigators. The refinement graph grammarsGGS→M,exp andGGS→M,act

3, for
a given configurationAn,i ∈ An, i ∈ N at the service level, produce the set of configurations
An−1,i that can implementAn,i at the middleware level (n − 1). These graph grammars are
an implementation of the refinement algorithm (table2). We present also a graph grammar
Pexp→act that allows transforming the architecture to handle evolving of communication re-
quirements from the exploration step to the action step. This graph grammar implements the
reconfiguration algorithm (table4). For the ERCMS case study, we define the contextC (ta-
ble 3) as the percentage of the available energy on each node (LE) and the percentage of the
available memory on each node (LM ). To illustrate our proposal, we also define the functions
Weight(), Contextaware_Cost() andRelative_Cost() used in table3 and table5.

The functionWeight() is defined as the number of transformations that refine a given
deployment architecture from leveln to leveln − 1.

For the functionContextaware_Cost(), we proceed in two steps. First, for each deploy-
ment nodeNodei, for a given deployment configurationAn−1,p, we calculate an evaluation

Vi =
αLE + βLM

α + β

where the valuesα andβ are weights that give the importance degree to be associatedwith
each factor (LE ,LM ). For instance, if we know that for a specific node the memory saturation
level is the most important factor, we setβ to a value higher thanα. Second, we calculate

Contextaware_Cost(An−1,p, C) =:
1

N

N∑

1

Vi

where the valueN is the number of nodes in the deployment configurationAn−1,p.
For two given deployment configurations An−1,q and An−1,k,

Relative_Cost(An−1,q, An−1,k) corresponds to the minimum redeployment actions for
switching fromAn−1,q to An−1,k.

The algorithm of table6 implements our abstract algorithm table1. In the first step we
capture the context: the percentage of the available energy(LE) and the percentage of the

3M stand for middleware, exp stand for Exploration step and actstand for Action step



Graph grammar-based transformation for context-aware architectures

TAB . 6 – The Adaptability Algorithm Implemented by Graph-Grammars
SelectAn,0 the initial deployment configuration
For all hosting nodes∈ An,0 capture the percentages of

available energy and of available memory: (LE) and (LM )
Apply GGS→M,exp to refineAn,0 into An−1,0

Apply Weight_Selection() to select the optimal deployment configurationAn−1,0

OnEvent investigator N discovers a critical situation
(change from the exploration step to the action step)

Apply Pexp→act to reconfigureAn,current into An,new

Apply GGS→M,act to refineAn,new into An−1,new

For all hosting nodes inAn,new capture (LE) and (LM )
Apply Distance_based_Selection() to select the optimal configurationAn−1,new

available memory (LM ) of each node in the initial deployment configurationAn,0. After the
refinement and the application of the weight-based selection algorithm, we obtain the optimal
deployment configurationAn−1,i that implementsAn,0 at the middleware level. After a re-
configuration, we obtain the deployment configurationAn,1. In the last step, we refine and
apply the distance-based selection procedure. We obtain the optimal deployment configuration
An−1,1 that implementsAn,1 at the middleware level and that represents an efficient adaptation
for the event that triggers the reconfiguration.

5.1 The Graph Grammar for Architecture Reconfiguration

Following the commonly used conventions, we consider that vertices represent commu-
nicating entities (e.g. services, components) and edges correspond to their inter-dependencies
(e.g. communication links, composition dependencies). For our study, we consider an architec-
ture instance that includes a coordinator (Coord) managingfour investigators (Inv). The graph
edges are labelled by the exchanged data types (D/P ). Each participant has three attributes:
the identifier, the used data type and the deployment node.

In the following, we provide an example of graph grammar for our case study to imple-
ment an architecture reconfiguration. The presented rewriting rule allows transforming the
architecture to handle evolving of communication requirement from the exploration step to the
action step. The graph grammar is reduced to a single production grammarPexp→act which
is parametrized by the investigator identifier (here, notedN) that has discovered the critical
situation. The architecture is transformed by splitting the communication channels between
the coordinator and the other investigators into a communication channel of typeP between
these investigators and the controller and another communication channel of typeD between
them and Node N.

Figure2 gives an example of the application of this rule to move the architecture from the
exploration step to the action step (fromAn,0 to An,1). Investigator i2 plays the role of the
critical investigator N.Pexp→act allows the correct generation of the communication channels.



I. Bouassida Rodriguez et al.

Coord(c,m1)

Inv(i2,m3)

Inv(i1,m2)

Inv(i4,m5)

Inv(i3,m4)

<D,P>

<D,P>

<D,P>

<D,P>

Coord(c,m1)

Inv(i2,m3)

Inv(i1,m2)

Inv(i4,m5)

Inv(i3,m4)

<P>

<D,P>

<P>

<P>

<D>

<D>

Node N Node N

<D>

FIG. 2 – Reconfiguration from the Exploration Step to the Action Step

5.2 The Graph Grammars for Architecture Refinement

In this section, we give the graph grammar addressing the refinement of a given architec-
ture of the S-level in all possible architectures of the M-level, during the exploration step and
the action step. Since this graph grammar refines a given S-level architecture into M-level
architectures, its non-terminal nodes are S-level entities while terminals nodes are M-level en-
tities. GGS→M,exp allows implementing this refinement in the exploration step. Figure3 gives

Coord(c,m1) Inv(i2,m3)

Inv(i1,m2)

Inv(i3,m4)

<D,P>

<D,P>

<D,P>

EC(ec1,D,m1)

EC(ec2,P,m1)

CM(cm1,D,m3)

CM(cm2,P,m4)

EP(ep1,D,m2)

EP(ep2,P,m2)
EP(ep1,D,m3)

EP(ep2,P,m3)

EP(ep1,D,m4)

EP(ep2,P,m4)
Pull

Pull

Pull

Pull

Push

Push

Push

Push

P1 o P2 o P2 o P2

FIG. 3 – UsingGGS→M,exp to achieve the refinement from S-level to M-level during explo-
ration step

the refinement generated byGGS→M,exp of An,0. The application of the sequence “p1; p2;
p2; p2” generates a configuration containing only terminal nodes (i.e. nodes belonging to the



Graph grammar-based transformation for context-aware architectures

M-level). Productionp1 allows the refinement of the pattern consisting of the coordinator, and
the two investigators whose matching host the channel managersCM1 andCM2. Production
p2 allows refining the pattern for the other investigators. Theresult configuration is considered
as a refinement of the initial architecture exploration step.

We also give the graph grammar addressing the refinement of any architecture of the S-level
in all possible architectures of the M-level, during the action step. Since this graph grammar
transforms S-level architecture into M-level architectures, its non-terminal nodes are S-level
entities while terminals nodes are M-level entities.

For the coordinator, we generate an event producer and channel managers to communicate
with the investigators.p1 deploys channel managers on the coordinator node. Figure4 gives
the refinement generated byGGS→M,act of An,1 by the application ofp4. We can generate an
alternative refinement by the application of the sequencep1; p5. This sequence of applications
generates configurations containing only terminal nodes (i.e. nodes belonging to the M-level).
This configuration is considered as a refinement of the initial architecture in the action step.

Coord(c,m1) Inv(i1,m2)

Inv(i2,m3)

Inv(i3,m4)

<P>

<D><P>

<D>

<D,P>

EP(ep0,P,m1)

EC(ec3,P,m1)

CM(cm1,P,m1)

EC(ec1,P,m1)

EC(ec2,D,m1)

CM(cm2,D,m1)

Push

Pull

EP(ep1,P,m2)

EP(ep2,D,m2)

EP(ep3,D,m2)

Pull

Pull

EP(ep4,P,m3)

CM(cm3,P,m3)

EP(ep5,P,m4)
CM(cm4,D,m4)

EC(ec5,D,m4)

EC(ec4,D,m3)

Pull

Pull
Pull

Pull

Pull

PullP4

FIG. 4 – UsingGGS→M,act to achieve the refinement from S-level to M-level during explo-
ration step

6 Conclusion

In this paper, we have presented a multi-level architectural reconfiguration approach for
implementing context-aware adaptation procedures. We have shown how describing deploy-
ment architectures as graphs and how using graph grammars allows a rule-based management
model to be elaborated. The rules handle both transforming agiven architecture within the
same level and architectural mappings between different levels. Using such a rule-based ap-
proach allows correct architectural reconfigurations to becharacterized and used either offline
to help implementing the decision process, or on-line to handle the architectural adaptation.
Our approach has been successfully illustrated for collaborative group communication and
applied for Emergency Response and Crisis Management Systems. On base of a graph trans-



I. Bouassida Rodriguez et al.

formation engine, we have simulated and validated our ruleswith successful scalability tests.
Current work addresses real experiments on top of ubiquitous networks started within the con-
text of the European project UseNet. Future research actions include defining the complete
adaptation process and refining the elaborated selection functions.

References

Allen, R. and D. Garlan (1997). A formal basis for architectural connection.ACM Transactions
on Software Engineering and Methodology 6(3), 213–249.

Chang, F. and V. Karamcheti (2000). Automatic configurationand run-time adaptation of
distributed applications. InHPDC, pp. 11–20.

Ellis, W., R. Hilliard, P. Poon, D. Rayford, T. Saunders, B. Sherlund, and R. Wade (1996).
Toward a recommended practice for architectural description. In 2nd IEEE International
Conference on Engineering of Complex Computer Systems, Montreal, Canada, pp. 21–25.

Ermel, C., R. Bardhol, and J. Padberg (2001). Visual design of software architecture and
evolution based on graph transformation. InUniform Approches to graphical process spec-
ification Techniques, Genove, Italy.

Exposito, E., P. Senac, and M. Diaz (2003). FPTP: the XQoS aware and fully pro-
grammable transport protocol. InProc. The 11th IEEE International Conference on Net-
works (ICON’2003), Sydney, Australia.

Fahmy, H. and R. Holt (2000). Using graph rewriting to specify software architectural trans-
formations. In15th IEEE international Conference on Automated Software Engineering,
ISBN 0-7695-0710-7, Grenoble, France, pp. 187–196.

Friday, A., N. Davies, G. Blair, and K. Cheverst (2000). Developing adaptive applications:
The most experience.Integrated Computer-Aided Engineering 6(2), 143– 157.

Ganek, A. and T. Corbi (2003). The dawning of the autonomic computing era.IBM Systems
Journal 42(1), 5–18.

Garlan, D. and D. Perry (1995). Introduction to the special issue on software architecture.
IEEE Transactions On Software Engineering 21(4), 269–274.

Hirsch, D., P. Inverardi, and U. Montanari (1999). Modelingsoftware architectures and styles
with graph grammars and constraint solving. In1st Working IFIP Conference on Software
Architecture, San Antonio, TX, USA, pp. 127–142. ISBN 0-7923-8453-9, Kluwer.

LeMetayer, D. (1998). Describing software architecture styles using graph grammars.IEEE
Transactions On Software Engineering 24(7), 521–533.

Nasser, N. and H. Hassanein (2004). Adaptive bandwidth framework for provisioning
connection-level qos for next-generation wireless cellular networks.Canadian Journal of
Electrical and Computer Engineering 29(1), 101–108.

Sun, J. Z., J. Tenhunen, and J. Sauvola (2003). Cme: a middleware architecture for network-
aware adaptive applications. InProc. 14th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, Volume 3, Beijing, China, pp. 839–843.

Wu, D., Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha (2001). Streaming video over the
internet: approaches and directions.IEEE Trans. Circuits Syst. Video Techn. 11(3), 282–300.


	Introduction
	Related work
	Model-based Approach for Adaptability Management
	Generic Graph Adaptability Algorithm
	Algorithm Execution

	Case Study
	Considered Abstraction Levels
	ERCMS Example

	The Graph Grammar-Based Rule-Oriented Implementation
	The Graph Grammar for Architecture Reconfiguration
	The Graph Grammars for Architecture Refinement

	Conclusion

