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Abstract. Autonomic systems can be self-adaptive and have the potential to
achieve high performance through run-time configuration changes. This paper
describes an architecture-centric self-adaptive approach and presents a simple
application in a distributed system where it can be advantageous to switch archi-
tectures based on the workload being presented to the system. The self-adaptive
framework is built on top of a generative system which comprises three software
architectural alternatives, namely Single Thread (ST), Half-Sync/Half-Async
(HS/HA) and Leaders-Followers (LFs). A software performance analysis tool
called the Layered Queuing Network Solver (LQNS) is integrated into the frame-
work to support the architecture selection process. A comparison of the perfor-
mance of the three different software architecture alternatives is also presented.
The results from this analysis are used to support the construction of a perfor-
mance knowledge base and analysis policies for the self-adaptive system.

1 Introduction

The complexity of computer systems is increasing at a fast speed and the number of com-
puting devices in use is growing dramatically (Parashar and Hariri, 2007). As a result, IT per-
sonnel have to face the burden of supporting tasks such as configuration, maintenance and sys-
tem performance evaluation (Enterprise Managment Associates, 2006). Further, manual con-
trol of a distributed computing system or a Web system is prone to errors, time-consuming, and
expensive. The goal of autonomic computing, initiated by IBM (Parashar and Hariri, 2007), is
to define rules for a system for controlling its behavior so that the system regulates its actions
to automatically configure, heal, protect, and optimize itself (Kephart and Chess, 2003). Many
research projects related to autonomic computing have been started (Muller et al., 2006), but
there is still a lack of research in the area of evaluating performance of software architectures
supporting architecture-based self-adaption at runtime.

Software architectures have significant impact on the performance of a system, however,
determining an optimal architecture early in the life cycle of a project is a challenging issue, For
instance, from the concurrency management perspective, two efficient architectural alternatives
have been proposed: Half-Sync/Half-Async (HS/HA) and Leader/Followers (LFs) (Schmidt
et al., 2000). The question that an architect often has to address is that of finding an architecture
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which is sufficiently efficient. Software Performance Engineering (SPE) (Smith and Williams,
2001), which relies on performance modeling, has been recognized as an effective approach
for addressing this issue.

The performance of a system is also often dependent on the operating systems and the
hardware. Various factors, including workloads, system resources, contentions, complex in-
teractions between the application and the kernel, and increasing hardware complexity, e.g.,
threading and parallelism, may affect the performance. Therefore, if an autonomic system can
reconfigure the architecture of a running system, integrating a software performance analysis
tool or a mechanism into the autonomic control system is necessary.

This paper proposes a self-adaptive approach at the architecture level and integrates a per-
formance analysis tool, the Layered Queuing Network Solver (LQNS) described in Franks
et al. (2009), into the self-adaptive system. In practice, numerous scenarios related to work-
loads, configurations, and resource usages need to be conducted for performance evaluation
of a product, which is often hindered by limited time and resources. Performance modeling
complements the self-adaptive framework by facilitating further scalability analysis or higher
workload evaluation. The operational generative system produces realistic performance data
which are collected and used for the simulation, and/or to build a performance knowledge
base (Woodside et al., 2007). The performance knowledge base can support self-adaptation at
runtime.

The major contributions of this paper are first to conduct performance modeling and com-
parison for three different software architectural patterns by building Layer Queuing Network
(LQN) models (Franks et al., 2009). Secondly, the approach introduces the concept of inte-
grating the performance models into a self-adaptive framework at the architecture level. The
system has the ability to achieve higher performance than a static system based on environ-
ment parameters, such as arrival rate, throughput, and waiting time, and architecture specific
features.

This paper is organized as follows: Section 2 briefly describes related background on au-
tonomic computing, a generative system, and the LQN model. Section 3 illustrates the com-
parison of two different software architectural alternatives by building the LQN models. Sec-
tion 4 demonstrates the self-adaptive framework. Finally, Section 5 presents the conclusions
and some future research directions.

2 Background

This section briefly provides the background information on autonomic computing and
outlines IBM’s architectural blueprint for building a self-adaptive system. Then a generative
system in distributed applications and LQN modeling are also introduced.

2.1 Overview of the Autonomic Computing

A significant challenge of modern distributed computing systems is that they become
tremendous complex. Manual control of a large distributed computing system is prone to er-
rors, time-consuming, expensive and they tend to increase very quickly as the size of the system
grows. The goal of the “Autonomic Computing Initiative”, started by IBM, is to define rules
for a system for controlling its behavior so that the system itself regulates its actions, much
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like the autonomic nervous system of an animal regulates actions, such as breathing, without
conscious effort (Parashar and Hariri, 2007).

The following four functional areas for autonomic computing have been defined by IBM (IBM
Autonomic Computing Architecture Team, 2006):

1. Self-Configuration: automatic configuration of components;

2. Self-Healing: automatic discovery and correction of faults;

3. Self-Optimization: automatic monitoring and control of resources to ensure the optimal
functioning with respect to the defined requirements;

4. Self-Protection: pro-active identification and protection from arbitrary attacks.

This paper will focus on the third item: self-optimization or self-adaptive for higher perfor-
mance. IBM’s blueprint for autonomic computing defines autonomic managers that are used to
manage software or hardware resources. The autonomic manager is a component that imple-
ments the control loop including four main functions that share knowledge (IBM Autonomic
Computing Architecture Team, 2006). They are

1. monitor: collect the details the autonomic manager needs from the system;

2. analyze: analyze those details to determine if something needs changing;

3. plan: create a plan or sequence of actions that specifies the necessary changes;

4. execute: perform those actions.

When these functions can be automated, an intelligent control loop is formed.

2.2 A Generative System

Our self-adaptive framework is built on top of an existing component-based distributed and
concurrent system. The system is an architecture-centric generative framework (Lung et al.,
2006), shown in Figure 1, that can be adopted for Web systems, client-server, or peer-to-peer
applications. The generative framework can be used to help the architect rapidly develop a pro-
totype and subsequently evaluate the software architecture effectively. The framework is com-
posed of three architecture alternatives, namely HS/HA, LFs and single thread (ST), that are
built with robust software components based on recognized patterns or existing solutions. The
framework can then be used to instantiate specific types of software architecture, as selected
by the architect. Such a framework facilitates rapid prototype development for comparison
among different alternatives based on actual execution data measured from each alternative. In
other words, the framework can generate quantitative and concrete operational information, or
collect more accurate or realistic data such as workload, processing speed, response time, and
packet loss (Lung et al., 2006). Each architectural alternative is made up of generic reusable
components (represented by the letters A, B, C, D, and E in Figure 1) and specific features (rep-
resented by the letters X and Y). The designer simply needs to focus and build the application
on top of the framework.

2.3 Software Patterns

Software patterns describe established proven solutions to recurring problems. Patterns
have the potential to improve software quality and/or productivity. There are different kinds of
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FIG. 1 – Structure and Components of the Generative Framework (Lung et al., 2006).

patterns: architectural patterns, design patterns, coding patterns (idioms), etc. This paper deals
with two specific architectural patterns in concurrency: HS/HA and LFs.

The HS/HA pattern is an architectural solution that decouples asynchronous and syn-
chronous service processing in concurrent systems in order to simplify programming without
unduly reducing performance (Schmidt et al., 2000). The pattern introduces two intercommu-
nicating layers, one for asynchronous and one for synchronous service processing. Figure 2a
shows three layers in this pattern. The asynchronous layer interacts with external requests (1).
Once the requests are received, they are stored in a queue in queuing layer (2). These requests
are then removed and processed by the synchronous layer (3). As a result, the synchronous
layer does not need to deal with external requests. Layers are independent and can perform op-
erations concurrently. Therefore, this pattern advocated for “performance-sensitive concurrent
applications” (Schmidt et al., 2000).

The LFs pattern, shown in Figure 2b, allows one thread called the leader to wait for a
incoming network request (1). All other idle threads, called followers, queue up waiting their
turn to become the leader. When the current leader thread receives a request (2), it promotes a
follower thread to become the new leader (3) and then processes the request. At this point, the
former leader and the new leader thread can execute concurrently (Schmidt et al., 2000).

2.4 Layered Queueing Networks (LQN)

The Layered Queuing Network (LQN) model is a canonical form for extended queuing net-
works with a layered structure. The layered structure arises from servers at one level making
requests to servers at lower levels as a consequence of a request from a higher level. LQN was
developed for modeling software systems, but it applies to any extended queuing network with
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FIG. 2 – Architectural Patterns from Schmidt et al. (2000).

multiple resource possession, in which multiple resources are held in a nested fashion (Wood-
side et al., 1995).

The performance model used in this paper for the ST architectural pattern, shown in Fig-
ure 3, is used to show the key elements of a layered queueing network. Requests originate
from layer 1, the “open arrival source” shown here, with a rate of λ = 0.9 and propagate
down through tasks by way of entries. Entries accept requests, consume time on processors,
and make requests to other entries. Service time demands to a task’s processor are shown us-
ing square brackets and request rates are shown using parenthesis. Figure 3 also shows results
from solving the model, for example, the service time for an entry, which includes the time
blocked at lower level servers, the queueing delay for requests, the utilization of tasks and pro-
cessors (labeled as µ in the figure), and the throughput at tasks (labeled at λ in the figure). The
complete model is described in Franks et al. (2009).

3 Performance Models for the Architectural Patterns

This section presents layered queueing network performance models of the HS/HA and
LFs architectural patterns. There are three goals for building the performance models: First,
there is lack of rigorous comparison for these two architectural alternatives. Second, the per-
formance models can be used to support performance planning and improvement and scalabil-
ity analysis in the future. Third, each architectural pattern or alternative has its advantages and
disadvantages. Performance modeling can help identify those areas to support decision making
for self-adaptation.

For the performance analysis of the architectural patterns, a simple model is used which
consists of application communicating with a database. To “improve performance”, and to
introduce a software bottleneck through blocking (Franks et al., 2006), the application and the
database run on separate processors. The service time for the system was split evenly between
the application and the database so that the utilization at the processors was balanced. Input
to the system is modeled as an open stream, where the workload intensity is specified by an
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arrival rate that is independent of the system state (Menasce et al., 2004). To find the capacity
of the system, its performance model is solved with increasingly large arrival rates. When a
resource such as a task or processor saturates, i.e. its utilization approaches one, the system
can no longer accept increased traffic. The performance model for this system using the ST
architecture pattern is shown in Figure 3. Note that the bottleneck is the SingleThread
task, and not either of the two processors.

3.1 HS/HA LQN Model

The HS/HA architecture queues asynchronous requests from the external environment into
a common buffer which is read by a set of synchronous worker threads. The LQN for this
architecture for the application described earlier is shown in Figure 4. In this model, the asyn-
chronous service layer and the common queue are modeled using the task labeled Buffer. It
is assumed that these buffers are retained until all processing is completed, so the Buffer task
is modeled as a multi-server where the number of copies of the task, shown using braces, rep-
resents the size of the queue. The synchronous portion of the architecture (the worker threads
in Figure 2a) is modeled using the multiserver task labeled SynchThread. Each instance of
this task makes one blocking call to the database server labeled DB. It is assumed that there is
insignificant overhead for buffer processing, so the service time of entry store is small.

Figure 4 also shows the results from solving the performance model using an arrival rate
of λ = 1.65. Using the approach described in Franks et al. (2006), the bottleneck for this
architecture is the SyncThread task, as its utilization is 4.94/5 = 0.99.

3.2 LFs LQN Model

The LF architectural pattern employs a queue of threads which take turns servicing a
select() call. The LQN for this architecture is shown in Figure 5. For this model, the leader
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thread is modeled using two tasks: LeaderThread and the first phase of the two-phase multi-
server, FollowerThread. The second phase (Franks et al., 2009) of FollowerThread
performs the actual work of the follower thread shown in Figure 2b. The service time for entry
gettingMessage corresponds to the overhead of switching the select() from task to task in
the LF architecture. The phase change of FollowerThread models event (2) in Figure 2b.

The results for solving this model using an arrival rate of λ = 1.5 are also shown on
Figure 5. For this particular architecture and configuration, the bottleneck is caused by the
processing by the LeaderThread task. While this task is almost fully utilized, its processor
is not.

3.3 Performance Comparison for Three Architectural Alternatives Us-
ing LQN Models

Two performance metrics are of interest for this study. First, which architecture has the
highest capacity, and second, which architecture has the lowest residence time for incoming
events. Figure 6 plots the utilization of the bottleneck task for the three architectures. The ST
architecture has the lowest capacity and the HS/HA the highest. Based on this metric alone,
the autonomic system should always choose the HS/HA architecture.

The second performance metric of interest is the residence time for incoming events. For
the HS/HA models, the events are stored in input buffers which are held for the duration of
processing by the application and database. For the LF architecture, events are stored in the
follower tasks so the leader thread is free to accept a subsequent event sooner. Figure 7 plots
this result of the three models shown earlier over a range of arrival rates. For arrival rates less
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than roughly 1.05, the LF architecture has a shorter residence time because the select() call
can occur sooner. However, when the arrival rate is greater than 1.05, the overhead caused by
the additional complexity of the LF pattern causes its residence time to exceed that of HS/HA.

Clearly, these results are only applicable for the parameters specified in this paper and by
choosing different values for service times, other conclusions can be drawn. However, if the
service times for the system are not stationary, and the alternative architectures exhibit the
behaviour shown here, then an autonomic system would benefit from incorporating a perfor-
mance model to allow it to choose the most optimum configuration at run time.

4 Self-adaptive Framework

The approach adopted in our research incorporates operational systems and software per-
formance modeling into autonomic framework by providing analysis services to the autonomic
manager. This section describes those components that are specific for self-adaptive support of
SPE. Figure 8 presents the framework. The bottom layer is the generative framework and the
top layer is the LQN solver. The operational generative system produces realistic performance
data which are used for the simulation. In addition, the simulation results are validated against
the performance measurements. The information is stored in the performance knowledge base
to support quick performance estimation and self-adaptation at runtime (Osogami and Kato,
2007).

4.1 Self-adaptation with Performance Modeling

The minimal autonomic manager consists of the following main components: monitor, an-
alyzer, planner, executive, interface sensor, effectors, and a knowledge base. The self-adaptive
framework is built on top of the component-based generative system to gather the performance
data and to support adaptation of software architecture via two interfaces. The framework in-
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troduces the LQN solver that interacts with autonomic manager to dynamically analyze the
software performance. The steps corresponding to the work flow shown in Figure 8 are:

1. The monitor component collects the software performance data from the generative sys-
tem via the sensor interface. These data include information about those parameters of
LQN performance models such as system throughput, the capacity of each software
layer, buffer size, and the number of threads.

2. After the monitor component filters and aggregates these data, the information is passed
to the LQN solver which generates the analysis result (2a). The monitor component also
informs the analyzer component to do the performance analysis (2b).

3. The analyzer component receives outputs from the LQN solver (3a) and checks the re-
lated performance analysis result from the knowledge base that stores the historic sys-
tem performance and simulated system performance (3b). It then generates the change
requests and passes them to the planner component (3c).

4. The planner component creates a change plan based on the change requests and updates
the knowledge base with new system architecture plan and predicted system perfor-
mance (4a). It then sends the change plan to the executive component (4b).

5. Based on the change plan, the executive component informs the LQN solver to load the
performance model corresponding to the new system architecture (5a). It also carries out
the change procedure to the generative system via the effector interface (5b).

The performance analysis strategy requires the LQNs result and performance data from
the knowledge base including modeling and historic results. From the control loop, the LQN
results will be generated, and the performance analysis results will be stored in the knowledge
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base at run time. To increase the accuracy of the analysis, a large amount of performance data
should be collected and/or generated and stored in the knowledge base.

4.2 Design and Implementation of the Control Mechanism

The design and implementation of the control mechanism is facilitated by the generative
framework. The main purpose of the generative framework was a proof-of-concept in raising
the abstraction to the architecture level. With that framework, one architecture alternative is
chosen and running at a time. To support autonomic computing, a middleware or a manager,
ArchitectureManager, has been added to the generative framework. In the new design,
one architecture alternative is at the running state, the others are on standby. The manager can
dynamically switch from one architecture alternative to another based on the control policy.
The manager can also disable the architecture switching feature based on user’s decision.

The ArchitectureManager controls which architectural alternative will be selected.
ST, HS/HA and LFs architectural alternatives are implemented by the STPerformer, HS/-
HAPerformer and LFSPerformer components, respectively. They are derived from the
previous generative framework and have been restructured for the self-adaptive framework.

Each architectural pattern has an associated buffer, i.e., STInputQueue, HS/HAInput-
Queue or LFInputQueue. When the ArchitectureManager receives requests from
clients, it will put requests into the buffer of the currently running architecture alternative, e.g.,
ST, HS/HA or LFs. During run time, one of the alternatives is active, the others are in the
standby state. Once the ArchitectureManager receives a switching command from the
Executive, it will activate the standby architectural alternative and put new requests into its
corresponding buffer. The buffers are used to ensure that the requests stored in the buffer that
have not been processed during architecture switching will not be discarded. The previously
running architecture will be changed to the standby mode after it finishes processing all the
requests stored in its own buffer.

By using the control mechanism, architecture switching delay is negligible and it does not
affect the performance and robustness of the whole system. Because each architecture alter-
native has its own buffer, so the request lost at the sockets is avoided during the switching.
We have manually tested the architecture switching between HS/HA and LFs every 10 sec-
onds and there is no packet drops. Further, the architecture alternatives are decoupled from the
generative system, so new architecture alternatives can be added into the system.

Currently, a simple control policy has been implemented for proof-of-concept. The policy
is primarily threshold based as a result of the pre-configured queue length based on mea-
surements or LQN performance analysis. With the threshold-based control policy, architecture
switching takes place when a threshold-crossing occurs. Other control policies can be inte-
grated into the framework. We are experimenting different policies, e.g., exponential averaging
and fuzzy logic, to estimate near-future workloads and conduct self-adaptation.

5 Conclusions

This paper presented the idea of architecture-centric autonomic systems. We proposed a
self-adaptive system that supports switching from one software architecture to another previ-
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ously built architecture based on performance monitoring and modeling. The idea is facilitated
with a generative framework.

Two well-known architectural patterns in this area have been documented, but no rigorous
performance comparison has been conducted. To build a self-adaptive system, performance
analysis is a key step. We have conducted experiments using operational systems and built
LQN models to compare the performance of two common patterns to better understand the
tradeoffs. Models have been constructed which show that different patterns have better perfor-
mance under different traffic loads. This phenomena strengthens the argument for incorporat-
ing performance analysis into an autonomic control system.

Currently, a simple control policy has been implemented for a proof-of-concept autonomic
system. The policy is primarily threshold-based. From our experiments with the self-adaptive
framework, oscillations due to frequent switching do not seem to happen.

The approach also has the potential to improve reliability. It could support switch over in
the event of a failure of one architectural alternative. When a failure occurs and is detected,
the manager can switch to another standby system which is based on a different architectural
design. If the active and standby systems are identical, as used in most cases in practice, the
same failure may occur again (White et al., 2009). Therefore, the proposed approach may
improve reliability, because different architectural alternative adopts different design policy.
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Résumé

Les systèmes autonomes peuvent s’adapter à leur environnement et peuvent ainsi atteindre
de haute niveaux de performance par le biais de reconfigurations en temps réel. Cet article pré-
sente une approche de conception d’architecture auto-adaptive ainsi qu’un exemple de son
utilisation dans un cas réel simple. Cette approche est basée sur un système génératif qui
comprend trois principales architectures logiciels (Single Thread, Half-Sync/Half-Async and
Leaders-Followers), ainsi qu’un outil d’analyse de performance pour la sélection de l’architecture
la plus adéquate en fonction de la charge soumise au système. Nous comparons la performance
des trois architectures et les résultats nous permettent d’améliorer la compréhension de leur
performance ainsi que de proposer des politiques de sélection d’architecture pour le système
autonomes.
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