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Abstract. This paper addresses the clustering problem given the similarity ma-
trix of a dataset. We define two distinct criteria with the aimof simultaneously
minimizing the cut size and obtaining balanced clusters. The first criterion min-
imizes the similarity between objects belonging to different clusters and is an
objective generally met in clustering. The second criterion is formulated with
the aid of generalized entropy. The trade-off between thesetwo objectives is
explored using a multi-objective genetic algorithm with enhanced operators.

1 Introduction

This paper addresses the clustering problem given the similarity matrix of a dataset. A
straightforward representation of the problem instance inthis case is a weighted graph, having
the objects as vertices and weighted edges expressing the similarity between objects. This
leads to a graph clustering/partitioning problem which aims at identifying groups of strongly
inter-connected vertices. A survey of graph clustering is presented in Schaeffer (2007).

A similarity spaceis a pair (S,w), wherew : S × S −→ R is a function such that
w(s, t) ≥ 0, w(s, t) = w(t, s), andw(s, s) = 1. for everys, t ∈ S. A similarity space(S,w)
can be regarded as a labelled graphG = (S,E,w), referred to as thesimilarity graph, where
the set of edgesE is defined asE = {(si, sj) | si, sj ∈ S andw(si, sj) > 0}. If S is a finite
setS = {s1, . . . , sn}, the dissimilarityw is described by a symmetric matrixW ∈ R

n×n,
wherewij = w(si, sj) for 1 ≤ i, j ≤ n.

A k-way clustering of a finite similarity space(S,w) is a partitionκ = {C1, . . . , Ck} of
S. The setsC1, . . . , Ck are the clusters ofκ. We seek ak-way partition ofS, κ such that the
cut size (i.e. the sum of weights of edges between clusters inthe similarity graph) is minimal,
and|Cp| ≈ |Cq|, for 1 ≤ p, q ≤ k, which means that the sizes of the clusters are as equal as
possible. Presentations of the state-of-the-art of graph clustering can be found in Fjällström
(1998), Karypis and Kumar (1998).

The paper is structured as follows. Section 2 examines the two objectives which have to
be optimized as stated in the problem definition. Section 3 provides a brief survey on the
genetic algorithms for clustering with an emphasis on the multi-objective formulation; the
representation and the operators we used are detailed. Section 4 presents experimental results.



Entropic-Genetic Clustering

2 Clustering as multi-objective optimization

Let κ = {C1, . . . , Ck} a clustering of the objects of the setS = {s1, . . . , sn}. The matrix
X ∈ R

n×k defined byxip = 1 if si ∈ Cp andxip = 0 otherwise, represents the clustering
κ. Note that each row of this matrix contains a single1 and that the total number of1 entries
equals the numbern of elements of the setS.

The matrixY = X ′X ∈ R
k×k is given by

ypq =

n
∑

i=1

x′
pixiq =

n
∑

i=1

xipxiq (1)

for 1 ≤ p, q ≤ k. Since any two clustersCp, Cq are disjoint, this a diagonal matrix. Its
diagonal elements areypp = |Cp| for 1 ≤ p ≤ k.

Let G = (S,E,w) be the similarity graph ofS. The symmetric matrixW ∈ R
n×n is

defined bywij = w(si, sj) if i 6= j andwij = 1 if i = j, for 1 ≤ i, j ≤ n.
Let Z = X ′WX ∈ R

k×k. We havezpq =
∑n

i=1

∑n

j=1
xipwijxjq for 1 ≤ i, j ≤ n.

Therefore, for the distinct clustersCp, Cq, zpq is precisely the value ofcut(Cp, Cq). Note also
thatzpp =

∑n

i=1

∑n

j=1
xipwijxjp equals the sum of the similarities between the objects of the

clusterCp. Clearly, to achieve maximal intra-clustering cohesion and minimal inter-clustering
dissimilarity it is necessary that the trace of the matrixZ (that is, the sum of the diagonal
elements ofZ) to be maximal and the sum of the off-diagonal elements ofZ to be minimal.

SinceZ is a non-negative matrix, its norm‖ Z ‖1=
∑k

p=1

∑k

q=1
|zpq| coincides with

the sum of its elements. Moreover,‖ Z ‖1=
∑n

i=1

∑n

j=1
wij and is constant for a given

similarity matrixW , regardless of the clusteringX. Therefore, the total weight of the inter-
cluster cuts equals‖ Z ‖1 −trace(Z) and minimizing it is equivalent to maximizing the total
within clusters similarity which is given astrace(Z) =

∑k

p=1
zpp.

We use a novel approach to insure that the clusters ofκ are balanced. To this end, we
use the generalized entropy of partitions of finite sets (seeSimovici and Djeraba (2008)) intro-
duced by Daróczy (1970) and by Havrda and Charvat (1967) and axiomatized by Simovici and
Jaroszewicz (2002). The use of entropy is suggested by the fact that it is a natural instrument
for evaluating the balancing quality of a probability distribution, and, therefore, the balancing
quality of a partition of a finite set.

For a partitionκ = {C1, . . . , Ck} of a setS and a numberβ > 1, theβ-entropy is defined

byHβ(κ) = 1

1−21−β

(

1 −
∑k

p=1

|Cp|
|S|

β
)

. Note thatlimβ→1 Hβ(κ) = −
∑k

p=1

|Bp|
|S| log

2

|Bp|
|S| .

In other words, the Shannon entropy is a limit case of the generalized entropy.
An important special case of the entropy is obtained forβ = 2. We haveH2(κ) =

2
(

1 −
∑k

p=1

|Cp|
|S|

2
)

and this is the well-knownGini index, gini(κ) used frequently in statis-

tics.
The largest value ofHβ(κ) is obtained whenκ consists of singletons, that is, whenk = n

andκ = αS = {{si} | 1 ≤ i ≤ n} and isHβ(αS) = 1

1−21−β

(

1 − |1|
|S|

β−1
)

; the least value

of Hβ(κ) is obtained forκ = ωS and equals0. Maximization of the entropy can be used as
a criterion for ensuring the uniformity of the cluster sizes. We will use the Gini index ofκ
because it presents certain computational advantages as shown next.
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Theorem 2.1 Let κ = {C1, . . . , Ck} a clustering of the objects of the setS = {s1, . . . , sn}
and letX ∈ R

n×k be the characteristic matrix of the clustering. We havegini(κ) = 2(1 −
trace(X ′XX ′X)).

Two objectives are used to find a balancedk-clusteringκ:

(i) minimization of the total cut of the clustering partition, which amounts to minimization
of

f1(X) =‖ Z ‖1 −trace(Z) =‖ X ′WX ‖1 −trace(X ′WX) (2)

(ii) maximization of cluster uniformity, which is equivalent to the maximization of the Gini
index ofκ, or to the minimization of

f2(X) = trace(X ′XX ′X) (3)

We seekX subjected to the conditionsxip ∈ {0, 1} for 1 ≤ i ≤ n and1 ≤ p ≤ k. Depending
on the aspects we need to emphasize in the clustering we can use a convex combination of
these criteriaΦa(X) = af1(X) + (1 − a)f2(X) = a(‖ X ′WX ‖1 −trace(X ′WX)) + (1 −
a)trace(X ′XX ′X), wherea ∈ [0, 1]. To simultaneously minimize criteriaf1 andf2, also a
non-linear combination can be used:

Ψ(X) =
f1(X)

n2 − f2(X)
=

‖ X ′WX ‖1 −trace(X ′WX)

n2 − trace(X ′XX ′X)
. (4)

3 The clustering algorithm

We use a genetic algorithm (GA) to deal with the graph clustering problem. In Luchian
et al. (1994) a new clustering encoding is proposed which considers only cluster representa-
tives, allowing for simultaneous search of the optimum number of clusters and the optimum
partition. The partition is constructed in a manner similarto k-means: the data items are
assigned to clusters based on the proximity to the cluster representatives.

Multi-objective GAs are used in the optimization of severalconflicting objectives. These
algorithms optimize simultaneously several objectives and return a set of non-dominated solu-
tions which approximate the Pareto front. For a problem involving m objectives denoted with
fi, 1 ≤ i ≤ m which have to be minimized, a solutionx is dominatedby a solutionx∗ if
fi(x

∗) ≤ fi(x), for all i, 1 ≤ i ≤ m and there existsj such thatfj(x
∗) < fj(x).

The Pareto optimal set of solutionsX∗ consists of all those solutions for which no improve-
ment in an objective can be made without a simultaneous worsening in some other objective.
In other words, the Pareto front consists of all solutions that are not dominated by any other
solution.

The multi-objective scheme we use to tackle the graph clustering problem is PESA-II ob-
tained by Corne et al. (2001). The algorithm maintains two populations of solutions. An
external populationstores mutually non-dominated clustering solutions, which correspond to
different trade-offs between the two objectives. At each iteration aninternal populationis cre-
ated by selecting chromosomes from the external population. This selection phase takes into
account the distribution of solutions across the two objectives by maintaining a hypergrid of
equally sized cells in the objective space. After selection, the crossover and mutation operators
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are applied within the internal population. The external population is updated by joining the
two populations and eliminating the dominated solutions.

A solution of the partitioning problem is represented in ourGA as a string of lengthn (the
number of vertices in the graph), taking values in the set{1, . . . , k}, wherek is the number of
clusters.

Initially a minimum spanning tree (MST) is constructed. Half of the population is ini-
tialized with candidate solutions created by repeating thefollowing procedure:k − 1 edges
are randomly removed from MST and the connected components are marked as individual
clusters. The rest of the population is filled with chromosomes generated randomly.

The crossover operator computes the intersection of two partitions (individuals in the pop-
ulation) and merges clusters of the intersection to producea new partition havingk clusters.
The decisions are made with regard to the two objectives to beoptimized and therefore two
distinct crossover operators are use. One operator aims at decreasing the cut size and therefore
performs some iterations of the hierarchical agglomerative clustering algorithm using average
linkage metric. The second operator merges iteratively thetwo smallest clusters aiming at
balancing the clusters, until a number ofk clusters is reached.

The mutation operator applies to a single partition and reallocates a randomly chosen ver-
tex and its most similar adjacent vertices to a randomly chosen cluster. The number of adjacent
vertices to be reallocated decreases during the run so that in final iterations only small pertur-
bations are allowed.

The fitness functions used in our multi-objective genetic approach are based on the two ob-
jectives presented in Section 2 and are formulated for minimization. We maximize the entropy
by minimizing the Gini index criterion 3 and minimize the average cut size as expressed by
Equation (4).

4 Experiments

Experiments on synthetic datasets produced by a synthetic generator1 was used to create
five datasets, each one consisting of 1500 data items groupedinto 3 clusters. Overlapping clus-
ters are rejected and regenerated, until a valid set of clusters is found. The datasets are named
asn1 − n2 − n3 with np denoting the size of clusterp. The size of the internal population was
set to 10. The maximum size for the external population containing non-dominated solutions
was set to 500 but in our experiments it did not exceed 250 elements. The number of iterations
was set to 10000.

Figure 1 presents the set of non-dominated solutions returned in the last iteration of the
genetic algorithm. The fitness values corresponding to the two criteria to be optimized are
normalized in range[0, 1]. The horizontal axis corresponds to Criterion (3) and the vertical
axis corresponds to the average cut size. The solution closest to the real partition of the dataset
is marked as a square; in this regard, the Adjusted Rand Index(ARI) (see Hubert (1985)) is
used to evaluate the quality of the partitions. The partition corresponding to the best/minimum
score computed as sum between the two objectives is marked asa triangle.

The shape of the Pareto front plotted for datasets of variousdegrees of uniformity is an
indicator of the interaction between the two objectives. Because both objectives are formulated

1. http://dbkgroup.org/handl/generators/generators.pdf
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for minimization, the desirable position of a clustering istowards the southwestern corner of
the diagram. The average cut size cannot be lowered indefinitely without severely affecting the
balancing of the clusters. A gap is recorded for the criterion measuring the uniformity once the
optimum solution (with regard to the true partition) is met.This gap is due to the dependency
between the two objectives: the second criterion measuringthe average cut size is built using
both the cut size and the entropy (the first objective).

Note that the ARI takes values higher than 0.95 in all cases, which indicates a very close
match to the real partition. Using a a convex combination of the two criteria we can identify
a near-optimum solution if the final set of non-dominated solutions is normalized within the
same range for both objectives.

To highlight the advantages of our multi-objective approach over other graph clustering
methods, the well-known recursive partitioning algorithmMETIS2 is used, which delivers
only perfectly-balanced clusters, even though in practicethis may not be the best solution
from the point of view of the cut size.

Table 1 presents comparative results. The ARI is reported for the solutions corresponding
to: 1) the partitioning with the highest ARI value, 2) the best partitioning under the convex
combination (average) over the two criteria normalized in range [0,1] and 3) the best balanced
partitioning from the non-dominated set of solutions delivered by the genetic algorithm, which
corresponds to clusters of equal size. Also, the ARI is reported for the partition computed with
METIS.

Instance best under ARI best convex best balanced METIS
combination

500-500-500 0.9999 0.9880 0.9999 0.9999
500-600-400 0.9909 0.9909 0.8111 0.8118
500-700-300 0.9625 0.9535 0.6588 0.6817
500-800-200 0.9839 0.9839 0.5764 0.5954
500-900-100 0.9950 0.9950 0.5615 0.5493

TAB . 1: Comparative Results

Our algorithm is comparable with METIS with regard to the quality of the balanced par-
titioning. However, a near-optimal match with the true partitioning of the dataset can be ex-
tracted from the final the set of non-dominated solutions in aunsupervised manner, using a
convex combination of the two criteria we use. Furthermore,this set can be explored to extract
the most convenient solution for the problem being solved.

Also Figure 1 shows that the non-linear criterionΨ(X) given by Equality (4) biases the
search towards highly balanced clusters and can be successfully used when a perfectly balanced
partition is desired. Its convex combination with the criterion measuring the balancing degree
of the partitioning is necessary to retrieve the true partitioning.

2. http://glaros.dtc.umn.edu/gkhome/
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FIG. 1: The set of non-dominated solutions for various datasets.
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Résumé

Cet article traite le problème de classification à partir d’une matrice de similarité sur un
ensemble de données. Nous définissons deux critères distincts pour obtenir des clusters équi-
librés et bien separés. Le premier critère minimise la similarité entre les objets appartenant à
différents groupes et constitue un objectif généralement atteint en matière de regroupement.
Le deuxième critère est formulé avec l’aide de l’entropie généralisée. Le compromis entre ces
deux objectifs est exploré en utilisant un algorithme génétique multi-objectifs avec opérateurs
renforcés.


