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Abstract. This paper addresses the clustering problem given theagitgima-
trix of a dataset. We define two distinct criteria with the aifrsimultaneously
minimizing the cut size and obtaining balanced clusters firist criterion min-
imizes the similarity between objects belonging to différelusters and is an
objective generally met in clustering. The second criteigformulated with
the aid of generalized entropy. The trade-off between tih@seobjectives is
explored using a multi-objective genetic algorithm withhanced operators.

1 Introduction

This paper addresses the clustering problem given theagitgiimatrix of a dataset. A
straightforward representation of the problem instandhiscase is a weighted graph, having
the objects as vertices and weighted edges expressingrtiilargy between objects. This
leads to a graph clustering/partitioning problem whichsahidentifying groups of strongly
inter-connected vertices. A survey of graph clusteringésented in Schaeffer (2007).

A similarity spaceis a pair (S, w), wherew : S x S — R is a function such that
w(s,t) > 0,w(s,t) = w(t,s), andw(s,s) = 1. for everys, t € S. A similarity space(.S, w)
can be regarded as a labelled grdph- (S, E, w), referred to as theimilarity graph where
the set of edge#’ is defined agy = {(s;, s;) | s:,5; € S andw(s;, s;) > 0}. If Sis afinite
setS = {s1,...,s,}, the dissimilarityw is described by a symmetric matrix € R™*",
wherew;; = w(s;,s;) forl <i,j < n.

A k-way clustering of a finite similarity spadé, w) is a partitionx = {C,...,Cy} of
S. The setg’1, ..., C} are the clusters of. We seek &-way partition ofS, x such that the
cut size (i.e. the sum of weights of edges between clustareisimilarity graph) is minimal,
and|C,| = |Cy|, for 1 < p,q < k, which means that the sizes of the clusters are as equal as
possible. Presentations of the state-of-the-art of gréydtering can be found in Fjallstrém
(1998), Karypis and Kumar (1998).

The paper is structured as follows. Section 2 examines tbeohjectives which have to
be optimized as stated in the problem definition. Sectiondiges a brief survey on the
genetic algorithms for clustering with an emphasis on thétirobjective formulation; the
representation and the operators we used are detailedorbégiresents experimental results.
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2 Clustering as multi-objective optimization

Letk = {C4,...,Cy} a clustering of the objects of the s&t= {s1, ..., s, }. The matrix
X e R™** defined byz,, = 1if s; € C, andz;, = 0 otherwise, represents the clustering
k. Note that each row of this matrix contains a singlend that the total number dfentries
equals the numbet of elements of the sef.

The matrixY = X’X e R*** is given by

n n
/ »
Ypqg = § mpixiq - § LipTiq (1)
1=1 1=1

for 1 < p,q < k. Since any two cluster§’,, C, are disjoint, this a diagonal matrix. Its
diagonal elements atg,, = |C,| for 1 < p < k.

Let G = (S, F,w) be the similarity graph of. The symmetric matri¥¥ € R"*" is
defined byw;; = w(s;,s;) if i # jandw,;; = 1if i =j,forl <i,j <n.

Let Z = X'WX € RM*. We havez,, = Y1) 327 wipwijay, for 1 < i, j < n.
Therefore, for the distinct cluste€s,, C,, z,, is precisely the value afut(C,, C;;). Note also
thatz,, = >, Yo7, zipwijzj, equals the sum of the similarities between the objects of the
clusterC),. Clearly, to achieve maximal intra-clustering cohesiod amnimal inter-clustering
dissimilarity it is necessary that the trace of the matfixthat is, the sum of the diagonal
elements of7) to be maximal and the sum of the off-diagonal element8 &6 be minimal.

Since Z is a non-negative matrix, its north Z ||;= Z’;Zl Z’;Zl |zpq| coOiNcides with
the sum of its elements. Moreovel,Z |1= Y., ?:1 w;; and is constant for a given
similarity matrix 17/, regardless of the clustering. Therefore, the total weight of the inter-
cluster cuts equal Z ||; —trace(Z) and minimizing it is equivalent to maximizing the total
within clusters similarity which is given asace(Z) = Z’;Zl Zpp-

We use a novel approach to insure that the clusters afe balanced. To this end, we
use the generalized entropy of partitions of finite sets 8emwvici and Djeraba (2008)) intro-
duced by Dar6czy (1970) and by Havrda and Charvat (1967):dnchatized by Simovici and
Jaroszewicz (2002). The use of entropy is suggested by théhi it is a natural instrument
for evaluating the balancing quality of a probability distition, and, therefore, the balancing
quality of a partition of a finite set.

For a partitionx = {C, ..., C)} of a setS and a numbef > 1, the3-entropy is defined
by Hs(k) = == (1 -k C;vl'["). Note thatlimg .1 Hs(r) = — S5, ‘2l log, L2l
In other words, the Shannon entropy is a limit case of the igéimed entropy.

An important special case of the entropy is obtainedfoe= 2. We haveHy(k) =

X 2
2 (1 — 22:1 ‘|Csp|‘ ) and this is the well-knowiGini index gini(x) used frequently in statis-
tics.

The largest value df(s(x) is obtained whem consists of singletons, that is, whénr= n

-1

andr = ag = {{s;} | 1 <i < n}andisHg(as) = 795 ( - %ﬂ ); the least value
of Hs(k) is obtained forx = wg and equal$). Maximization of the entropy can be used as
a criterion for ensuring the uniformity of the cluster sizé8e will use the Gini index of
because it presents certain computational advantagesas siext.
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Theorem 2.1 Letk = {C4,...,Cy} a clustering of the objects of the s&t= {s1,...,s,}
and letX € R™** be the characteristic matrix of the clustering. We hairé(rx) = 2(1 —
trace(X' X X' X)).

Two objectives are used to find a balanéedusterings:

(i) minimization of the total cut of the clustering partitipwhich amounts to minimization
of
[(X) =|| Z ||, —trace(Z) =|| X'WX ||; —trace(X'W X) (2)

(i) maximization of cluster uniformity, which is equivaleto the maximization of the Gini
index of x, or to the minimization of

f2(X) = trace(X' X X'X) (3)

We seekX subjected to the conditions, € {0,1} for1 <: <n andl < p < k. Depending
on the aspects we need to emphasize in the clustering we eaa csnvex combination of
these criteriab, (X) = af1(X) + (1 — a) fo(X) = a(|| X'WX ||; —trace(X'WX)) + (1 —
a)trace(X'X X' X'), wherea € [0,1]. To simultaneously minimize criterig and f», also a
non-linear combination can be used:

f1(X) | X'WX |, —trace(X'WX)

U(X) = n?— fo(X)  n?-tace(X'XX'X) @

3 The clustering algorithm

We use a genetic algorithm (GA) to deal with the graph clirsgeproblem. In Luchian
et al. (1994) a new clustering encoding is proposed whiclsidens only cluster representa-
tives, allowing for simultaneous search of the optimum nentf clusters and the optimum
partition. The partition is constructed in a manner simitak-means: the data items are
assigned to clusters based on the proximity to the cluspeesentatives.

Multi-objective GAs are used in the optimization of sevaraihflicting objectives. These
algorithms optimize simultaneously several objectives r@turn a set of non-dominated solu-
tions which approximate the Pareto front. For a problemliriiig m objectives denoted with
fi,1 < i < m which have to be minimized, a solutianis dominatedby a solutionz* if
fi(z*) < fi(x), foralli, 1 <1i < m and there existg such thatf;(z*) < f;(x).

The Pareto optimal set of solutioiS* consists of all those solutions for which no improve-
ment in an objective can be made without a simultaneous winrgén some other objective.
In other words, the Pareto front consists of all solutiorat #ire not dominated by any other
solution.

The multi-objective scheme we use to tackle the graph aingt@roblem is PESA-1I ob-
tained by Corne et al. (2001). The algorithm maintains twpyations of solutions. An
external populatiorstores mutually non-dominated clustering solutions, Witicrrespond to
different trade-offs between the two objectives. At eaeleition arinternal populations cre-
ated by selecting chromosomes from the external populafibis selection phase takes into
account the distribution of solutions across the two objestby maintaining a hypergrid of
equally sized cells in the objective space. After selectioa crossover and mutation operators
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are applied within the internal population. The externgbydation is updated by joining the
two populations and eliminating the dominated solutions.

A solution of the partitioning problem is represented in G4 as a string of length (the
number of vertices in the graph), taking values in the{set. ., k}, wherek is the number of
clusters.

Initially a minimum spanning tree (MST) is constructed. Hail the population is ini-
tialized with candidate solutions created by repeatingftfiewing procedure:k — 1 edges
are randomly removed from MST and the connected componeatmarked as individual
clusters. The rest of the population is filled with chromossrgenerated randomly.

The crossover operator computes the intersection of twtitipas (individuals in the pop-
ulation) and merges clusters of the intersection to produoew partition having: clusters.
The decisions are made with regard to the two objectives toptienized and therefore two
distinct crossover operators are use. One operator ainecegasing the cut size and therefore
performs some iterations of the hierarchical agglomegatlustering algorithm using average
linkage metric. The second operator merges iterativelytwee smallest clusters aiming at
balancing the clusters, until a numberfo€lusters is reached.

The mutation operator applies to a single partition andaeates a randomly chosen ver-
tex and its most similar adjacent vertices to a randomly ehatuster. The number of adjacent
vertices to be reallocated decreases during the run sortffiati iterations only small pertur-
bations are allowed.

The fitness functions used in our multi-objective genetjgrapch are based on the two ob-
jectives presented in Section 2 and are formulated for ma@tion. We maximize the entropy
by minimizing the Gini index criterion 3 and minimize the axge cut size as expressed by
Equation (4).

4 Experiments

Experiments on synthetic datasets produced by a synthetiergtof was used to create
five datasets, each one consisting of 1500 data items granfoe8iclusters. Overlapping clus-
ters are rejected and regenerated, until a valid set ofestugt found. The datasets are named
asn; — ne — ng With n,, denoting the size of cluster The size of the internal population was
set to 10. The maximum size for the external population doimg non-dominated solutions
was set to 500 but in our experiments it did not exceed 250aiesn The number of iterations
was set to 10000.

Figure 1 presents the set of non-dominated solutions reduim the last iteration of the
genetic algorithm. The fithess values corresponding towledriteria to be optimized are
normalized in rang€0, 1]. The horizontal axis corresponds to Criterion (3) and theticad
axis corresponds to the average cut size. The solutiongtltsthe real partition of the dataset
is marked as a square; in this regard, the Adjusted Rand Ig&RK (see Hubert (1985)) is
used to evaluate the quality of the partitions. The partitorresponding to the best/minimum
score computed as sum between the two objectives is markettiaagle.

The shape of the Pareto front plotted for datasets of vamegsees of uniformity is an
indicator of the interaction between the two objectivescd&ese both objectives are formulated

1. http://dbkgroup.org/handl/generators/generatdfs.p
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for minimization, the desirable position of a clusteringdeards the southwestern corner of
the diagram. The average cut size cannot be lowered inagyimithout severely affecting the
balancing of the clusters. A gap is recorded for the criten@asuring the uniformity once the
optimum solution (with regard to the true partition) is m€his gap is due to the dependency
between the two objectives: the second criterion measthi@gverage cut size is built using
both the cut size and the entropy (the first objective).

Note that the ARI takes values higher than 0.95 in all caséghindicates a very close
match to the real partition. Using a a convex combinatiorhefttvo criteria we can identify
a near-optimum solution if the final set of non-dominatedigohs is normalized within the
same range for both objectives.

To highlight the advantages of our multi-objective apptoager other graph clustering
methods, the well-known recursive partitioning algorithETIS? is used, which delivers
only perfectly-balanced clusters, even though in pradiiée® may not be the best solution
from the point of view of the cut size.

Table 1 presents comparative results. The ARI is reportethéosolutions corresponding
to: 1) the partitioning with the highest ARI value, 2) the bpartitioning under the convex
combination (average) over the two criteria normalizechimye [0,1] and 3) the best balanced
partitioning from the non-dominated set of solutions deléd by the genetic algorithm, which
corresponds to clusters of equal size. Also, the ARI is ripldior the partition computed with
METIS.

Instance best under ARI| best convex| best balanced METIS
combination

500-500-500 0.9999 0.9880 0.9999 | 0.9999

500-600-400 0.9909 0.9909 0.8111| 0.8118

500-700-300 0.9625 0.9535 0.6588 | 0.6817

500-800-200 0.9839 0.9839 0.5764 | 0.5954

500-900-100 0.9950 0.9950 0.5615| 0.5493

TAaB. 1: Comparative Results

Our algorithm is comparable with METIS with regard to the lifyaf the balanced par-
titioning. However, a near-optimal match with the true fiimming of the dataset can be ex-
tracted from the final the set of non-dominated solutions imsupervised manner, using a
convex combination of the two criteria we use. Furthermthig,set can be explored to extract
the most convenient solution for the problem being solved.

Also Figure 1 shows that the non-linear criteri@X') given by Equality (4) biases the
search towards highly balanced clusters and can be susltgssied when a perfectly balanced
partition is desired. Its convex combination with the afie measuring the balancing degree
of the partitioning is necessary to retrieve the true partihg.

2. http://glaros.dtc.umn.edu/gkhome/
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FiG. 1: The set of non-dominated solutions for various datasets
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Résumeé

Cet article traite le probléme de classification a partimé’'umatrice de similarité sur un
ensemble de données. Nous définissons deux critéres thgtioar obtenir des clusters équi-
librés et bien separés. Le premier critére minimise la siritéd entre les objets appartenant a
différents groupes et constitue un objectif généralemtainhd en matiére de regroupement.
Le deuxieme critére est formulé avec l'aide de I'entropirégélisée. Le compromis entre ces
deux objectifs est exploré en utilisant un algorithme géunétmulti-objectifs avec opérateurs
renforcés.



