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Résumé. Nous présentons une nouvelle approche à la discrétisation su-
pervisée des attributs continues qui se sert de l’espace métrique des parti-
tions d’un ensemble fini. Nous discutons deux nouvelles idées fondamen-
tales : une généralisation des techniques de discrétisation de Fayyad-Irani
basée sur une distance sur des partitions, dérivée de l’entropie généralisée
de Daroczy, et un nouveau critère géométrique pour arrêter l’algorithme
de discrétisation. Les arbres de décision résultants sont plus petits, ont
moins de feuilles, et montrent des niveaux plus élevés d’exactitude etablis
par la validation croisée stratifiée.

1 Introduction

Many machine learning and data mining algorithms can deal only with nominal
attributes; however, many data sets of interest have numerical domains and this makes
discretization, the conversion from numerical to nominal domains, an important task
for data preparation. The literature that deals with discretization is vast and it in-
cludes ideas ranging from fixed k-interval discretization [Dougherty et al., 1995], fuzzy
discretization (see [Kononenko, 1993]), Shannon-entropy discretization due to Fayyad
and Irani presented in [Fayyad, 1991, Fayyad et Irani, 1993], proportional k-interval
discretization (see [Yang et Webb, 2003]), or techniques that are capable of dealing
with highly dependent attributes (cf. [Robnik et Kononenko, 1995]). The goal of this
paper is to introduce a new approach to supervised discretization using the metric
space of partitions over finite sets. We present two new basic ideas: a generalization of
Fayyad-Irani discretization techniques that relies on a metric on partitions defined by
Daróczy’s generalized entropy, and a new geometric criterion for halting the discreti-
zation process that extends a similar approach proposed by Cerquides and López de
Màntaras in [Cerquides et de Màntaras, 1997] using a metric generated by Shannon’s
entropy.

A partition of a non-empty set S is a non-empty collection of non-empty subsets
of S, π = {Pi | i ∈ I} such that

⋃

{Pi | i ∈ I} = S, and i,j ∈ I , i 6= j implies
Pi ∩ Pj = ∅. The set of partitions of S is denoted by PART(S). For a subset L of M

the trace of the partition π on the set L is the partition πL = {Pi ∩ L | 1 ≤ i ≤
k and Pi ∩L 6= ∅}. Daróczy’s β-entropy for a partition π = {P1, . . . ,Pk} ∈ PART(S) is
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Hβ(π) = 1

21−β−1

(

∑k
i=1

(

|Pi|
|S|

)β

− 1

)

, where β is a positive number. It is easy to see

that limβ→1 Hβ(π) is the Shannon’s entropy. The entropy of a partition πL serves to
measure the impurity of the set L relative to the partition π: the larger the entropy, the
more L is scattered among the blocks of π. If π,σ are two partitions in PART(S), the
average impurity of the blocks of σ relative to π is the conditional entropy of π relative

to σ: H(π|σ) =
∑m

j=1

|Qj |
|S| H(πQj

), where σ = {Q1, . . . ,Qm}. López de Màntaras proved

that the function d : PART(S)×PART(S) −→ R defined by: d(π,σ) = H(π|σ)+H(σ|π),
where H is the Shannon entropy is a metric on PART(S) (see [de Màntaras, 1991]).

For σ,π ∈ PART(S), where π = {P1, . . . ,Pk} and σ = {Q1, . . . ,Qm}, the Daróczy’s

conditional β-entropy Hβ(π|σ) is given by Hβ(π|σ) =
∑m

j=1

(

|Qj |
|S|

)β

, and thus,

Hβ(π|σ) =
1

(21−β − 1)|S|β





k
∑
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m
∑

j=1

|Pi ∩ Qj |
β −

m
∑

j=1

|Qj |
β



 .

A related result obtained in [Simovici et Jaroszewicz, 2003] shows that the function
dβ : PART(S) × PART(S) −→ R given by

dβ(π,σ) = Hβ(π|σ) + Hβ(σ|π) (1)

=
1

(21−β − 1)|S|β



2 ·
k

∑

i=1

m
∑

j=1

|Pi ∩ Qj |
β −

n
∑

i=1

|Pi|
β −

m
∑

j=1

|Qj |
β



 .

is a distance; we used it in (Simovici 2003) to obtain small and accurate decision trees.
For π,σ ∈ PART(S) we write π ≤ σ if each block of π is included in a block of σ. If

π1,π2 ∈ PART(S), then we denote by π1 ∧ π2 the partition whose blocks are all non-
empty intersections of the form K ∩ H , where K ∈ π1 and H ∈ π2. The generalized
conditional entropy is dually monotonic in its first argument and monotonic in its
second, that is π ≤ π′ implies Hβ(π|σ) ≥ Hβ(π′|σ) and σ ≤ σ′ implies Hβ(π|σ) ≤
Hβ(π|σ′), as we have shown in [Simovici et Jaroszewicz, 2003].

If T is a table and A is an attribute of T , we refer to the set of members of the
domain of B that occur under B in T as the active domain of B; this set is denoted
by adomT (B), or, if there is no risk of confusion, simply by adom(B). The partition of
the set of tuples of T that corresponds to a partition π of adomT (B) is denoted by π∗.
A block of π∗ consists of all tuples whose B-projections belong to the same block of π.

Discretization of a numeric attribute B involves selecting a set of cutpoints S =
{t1, . . . ,t`} in the active domain of the attribute adom(B), where t1 < t2 < · · · < t`.
This set of cutpoints creates a partition πS = {Q0, . . . ,Q`} of adom(B), where Qi =
{b ∈ adom(B) | ti−1 ≤ b < ti} for 0 ≤ i ≤ `+1, where t0 = −∞ and t`+1 = +∞. If the
set S consists of a single cutpoint t we shall denote πS simply by πt. The discretization
process consists of replacing each value that falls in the block Qi of πS by i for 0 ≤ i ≤ `.

Let πA be a partition of the set of tuples of a table determined by the values of
an attribute A. If the list of tuples sorted on the values of an attribute B is t1, . . . ,tn,
define the partition πB,A of adom(B) as consisting of the longest runs of consecutive
B-components of the tuples in this list that belong to the same block K of the partition
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πA. The boundary points of the partition πB,A are the least and the largest elements of
each of the blocks of the partition πB,A. It is clear that πB,A∗ ≤ πA for any attribute
B.

Fayyad proved that to obtain the least value of the Shannon’s conditional entropy
H(πA|πt

∗) the cutpoint t must be chosen among the boundary points of the the par-
tition πB,A, which limits drastically the number of possible cut points and improves
the tractability of the discretization [Fayyad, 1991]. Our main results show that the
same choice of cutpoints must be made for a broader class of impurity measures,
namely the impurity measures related to generalized conditional entropy. Moreover,
when the purity of the partition πt

∗ is replaced as a discretization criterion by the
minimality of the entropic distance between the partitions πA and πt

∗ (introduced
in [Simovici et Jaroszewicz, 2003]) the same method for selecting the cutpoint can be
applied.

2 A Generalization of Fayyad’s Result

We are concerned with supervised discretization, that is, with discretization of
attributes that takes into account the classes where the tuples belong. Suppose that
the class of tuples is determined by the attribute A and we need to discretize an
attribute B. The discretization of B aims to construct a set S of cutpoints of adom(B)
such that the blocks of πS

∗ be as pure as possible relative to the partition πA, that is,
the conditional entropy Hβ(πA|πS

∗ ) is minimal.

The following theorem generalizes and amplifies Fayyad’s result (Theorem 5.4.1
of [Fayyad, 1991]):

Theorem 2.1 Let T be a table where the class of the tuples is determined by the
attribute A and let β ∈ (1,2]. If S is a set of cutpoints such that the conditional entropy
Hβ(πA|πS

∗ ) is minimal among the set of cutpoints with the same number of elements, or
if dβ(πA,πS

∗ ) is minimal among the set of cutpoints with the same number of elements,
then S consists of boundary points of the partition πB,A of adom(B).

To discretize adom(B) we shall seek a set S of cutpoints such that dβ(πA,πS
∗ )

is minimal. Before introducing cutpoints, we have S = ∅, πS
∗ = ω, and therefore

Hβ(πA|ω) = Hβ(πA). When the set S grows the entropy Hβ(πA|πS
∗ ) decreases. The

use of conditional entropy Hβ(πA|πS
∗ ) tends to favor large cutpoint sets for which the

partition πS
∗ is small in the partial ordered set (PART(S), ≤). In the extreme case,

every point would be a cutpoint, a situation that is clearly unacceptable. Fayyad-Irani
technique halts the discretization process using the principle of minimum description.
We adopt another technique that has the advantage of being geometrically intuitive
and produces very good experimental results.

Using the distance dβ(πA,πS
∗ ) = Hβ(πA|π

S
∗ )+Hβ(πS

∗ |πA) the decrease in the value
of Hβ(πA|πS

∗ ) when the set of cutpoints grows is balanced by the increase in Hβ(πS
∗ |πA).

Note that initially we have Hβ(ω|πA) = 0. The discretization process can thus be halted
when the distance dβ(πA,πS

∗ ) stops decreasing. Thus, we retain as a set of cutpoints for
discretization the set S that determines the closed partition to the class partition πA.
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Input: A table T, a class attribute A,and a real-valued attribute B.

Output: A discretized attribute B.

Method: sort table T on attribute B;

compute the set BP of boundary points of partition πB,A∗;
S = ∅; d = ∞;
while BP 6= ∅ do

let t = arg min t∈BP
dβ(πA,π

S∪{t}
∗ );

if d ≥ dβ(πA,π
S∪{t}
∗ ) then

begin

S = S ∪ {t}; BP = BP − {t};
d = dβ(πA,πS

∗ )
end

else exit while loop;
end while;
for πS

∗ = {Q0, . . . ,Q`} replace every q ∈ Qi by i for 0 ≤ i ≤ `.

Fig. 1 – Discretization Algorithm

As a result, we obtain good discretizations (as evaluated through the results of various
classifiers that use the discretize data) with relatively small cutpoint sets.

3 Discretization Algorithm and Experimental Re-

sults

The algorithm is shown in Figure 1. It makes successive passes over the table and,
at each pass it adds a new cutpoint chosen among the boundary points of πB,A. The
while loop is running for as long as there exist candidate boundary points and it is

possible to find a new cutpoint t such that the distance dβ(πA,π
S∪{t}
∗ ) is less than the

previous distance d = dβ(πA,πS
∗ ). An experiment performed on a syntetic database

shows that a substantial amount of time (about 78% of the total time) is spent on
decreasing the distance by the last 1%. Therefore, in practice we run a search for a

new cutpoint only if |d − dβ(πA,π
S∪{t}
∗ )| > 0.01d.

Our discretization algorithm was tested on several machine learning data sets from
UCI [Blake et Merz, 1998] that have numerical attributes. After discretizations perfor-
med with several values of β (typically β ∈ {1.5,1.8,1.9,2}) we built the decision trees on
the discretized data sets using the WEKA J48 variant of C4.5 [Witten et Frank, 2000].
The size, number of leaves and accuracy of the trees are described in below, where trees
built using the Fayyad-Irani discretization method of J48 are designated as “standar-
d”. The discretization technique had a significant impact of the size and accuracy of
the decision trees. The experimental results show that an appropriate choice of β can
reduce significantly the size and number of leaves of the decision trees, roughly main-
taining the accuracy (measured by stratified 5-fold cross validation) or even increasing
the accuracy as shown by the experiments on the glass data set.
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Database Experimental Results

Discretization
method

Size
Number of
leaves

Accuracy
(stratified
cross-validation)

heart-c standard 51 30 79.20
β = 1.5 20 14 77.36
β = 1.8 28 18 77.36
β = 1.9 35 22 76.01
β = 2.0 54 32 76.01

glass standard 57 30 57.28
β = 1.5 32 24 71.02
β = 1.8 56 50 77.10
β = 1.9 64 58 67.57
β = 2.0 92 82 66.35

ionosphere standard 35 18 90.88
β = 1.5 15 8 95.44
β = 1.8 19 12 88.31
β = 1.9 15 10 90.02
β = 2.0 15 10 90.02

iris standard 9 5 95.33
β = 1.5 7 5 96
β = 1.8 7 5 96
β = 1.9 7 5 96
β = 2.0 7 5 96

diabetes standard 43 22 74.08
β = 1.8 5 3 75.78
β = 1.9 7 4 75.39
β = 2.0 14 10 76.30

Tab. 1 – Experimental Results

4 Conclusions and Open Problems

With an appropriate choice of the parameter β that defines the metric used in dis-
cretization, standard classifiers such as C4.5 or J48 generate smaller decision trees with
comparable or better levels of accuracy when applied to data discretized with our tech-
nique. We explored only the use of decision trees. Other classification techniques that
work with nominal attributes, such as naive Bayes classifiers should also be explored.
Also, we intend to examine metric discretization for data with missing values.

Summary

We introduce a new approach to supervised discretization of continuous-valued at-
tributes that makes use of the metric space of partitions. We present two new basic
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ideas: a generalization of Fayyad-Irani discretization techniques that relies on a me-
tric on partitions derived from Daróczy’s generalized entropy, and a new geometric
criterion for halting the discretization process. The resulting decision trees are smal-
ler, have fewer leaves, and display higher levels of accuracy as verified by stratified
cross-validation.
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