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Abstract. The most common fitness evaluation for Bayesian networks in the

presence of data is the Cooper-Herskovitz criterion. This technique involves

massive amounts of data and, therefore, expansive computations. We propose a

cheaper alternative evaluation method using simplified assumptions which pro-

duces evaluations that are strongly correlated with the Cooper-Herskovitz crite-

rion.

1 Introduction

We investigate the problem of constructing a Bayesian network for a composite phe-

nomenon U = {u1, u2, . . . , un} where ui for 1 ≤ i ≤ n are discrete random variables

representing the state assignment of the attributes of U. To accomplish this, we start from

a data multiset D = {t1, t2, . . . , tm} where an n-ary tuple ti is an instance of the event U. We

refer to this multiset as evidence data set (data set for short).

A number of assumptions are necessary for deriving a measure for evaluating the fitness

of a Bayesian network structure (BNS) for a training data set. Stronger hypotheses make the

evaluationmoremanageable. On the other hand, the model obtained under weaker assumptions

is better capable to be conforming with the underlying true distribution of the problem.

Let G = (U, E) be a directed acyclic graph having U as its set of vertices and E as its set

of edges, which captures the direct probabilistic dependencies among these variables. Let Θ be

the collection of parameters which quantifies the joint probability distribution of U as specified

by G. We denote the set of possible assignments of a random variable ui by Dom(ui) =
{u1

i , . . . , u
ri

i }. The notion of domain can be extended to sets of variables V using Cartesian

product. If the set of parent nodes of ui is ParG(ui), then Dom(ParG(ui) = {U1
i , . . . , U qi

i }.
The set of non-descendants of ui, ndG(ui) is the set of all nodes in U excluding ui and all its

descendants. When it is clear from the context we drop the subscript G. The pair B = (G, Θ)
satisfies the local Markov condition if PB(ui|nd(ui)) = PB(ui|Par(ui)) for 1 ≤ i ≤ n, where
PB is the probability distribution on U specified by B. The model B is a Bayesian network

if it satisfies the local Markov condition. By the chain rule we have: PB(u1, u2, . . . , un) =∏n
i=1 PB(ui|Par(ui)). Therefore if we let θijk = P (ui = uk

i |Par(ui) = U j
i ) and θij· =

(θij1, . . . , θijri) for 1 ≤ i ≤ n, 1 ≤ k ≤ ri and 1 ≤ j ≤ qi, then the joint probability

distribution on U is specified by Θ = {θij·|1 ≤ i ≤ n and 1 ≤ j ≤ qi}.
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