
Topological Decomposition and Heuristics for High Speed
Clustering of Complex Networks

Faraz Zaidi∗, Guy Melançon∗∗

∗Karachi Institute of Economics and Technology (KIET)
Korangi Creek, Karachi, 75190, Pakistan

faraz@pafkiet.edu.pk
∗∗CNRS UMR 5800 LaBRI & INRIA Bordeaux - Sud Ouest
351, cours de la Libération, 33405 Talence cedex, FRANCE

guy.melancon@labri.fr

Abstract. With the exponential growth in the size of data and networks, de-
velopment of new and fast techniques to analyze and explore these networks is
becoming a necessity. Moreover the emergence of scale free and small world
properties in real world networks has stimulated lots of activity in the field of
network analysis and data mining. Clustering remains a fundamental technique
to explore and organize these networks. A challenging problem is to find a clus-
tering algorithm that works well in terms of clustering quality and is efficient in
terms of time complexity.
In this paper, we propose a fast clustering algorithm which combines some
heuristics with a Topological Decomposition to obtain a clustering. The algo-
rithm which we call Topological Decomposition and Heuristics for Clustering
(TDHC) is highly efficient in terms of asymptotic time complexity as compared
to other existing algorithms in the literature. We also introduce a number of
Heuristics to complement the clustering algorithm which increases the speed of
the clustering process maintaining the high quality of clustering. We show the
effectiveness of the proposed clustering method on different real world data sets
and compare its results with well known clustering algorithms.

1 Introduction
Most real world systems take the form of networks where a set of nodes and edges might be

used to represent these networks. Examples include social networks, metabolic networks, food
web, transport networks (Newman (2003)). Clustering remains an important technique towards
the better exploration and organization of these networks. In terms of networks representing
real world data, a cluster can be defined as a group of nodes which are similar or connected
in some predefined sense and dissimilar to nodes belonging to the other clusters (Schaeffer
(2007)). Detection of clusters has a wide range of applications in various fields. For example,
in social networks, clustering could lead us towards a better comprehension of the interactions
taking place between people, or for biological networks, a useful application of clustering is in
the identification of biomarkers in a protein-protein interaction network.

- 83 -



Topological Decomposition for High Speed Clustering

Different measures have been studied to classify these networks. Two such classifications
have gained lots of interest when networks exhibit small world (Watts and Strogatz (1998)) and
scale free (Barabási and Albert (1999)) features. These features make the networks complex
and the clustering problem challenging. Some examples of networks that are both scale free
and small world at the same time are the network of Author (Newman (2001)) and Movie
Actor network (Watts and Strogatz (1998)).

Another important issue that needs to be addressed while developing clustering algorithms
for these networks is the Time Complexity as with the increasing size of these networks, it be-
comes almost impractical to use slow clustering algorithms. Algorithms exist in the literature
addressing the clustering problem for large size complex networks but a trade off exists be-
tween Clustering Accuracy and the Time Complexity. Thus it is evident that faster algorithms
are required to achieve high speed clustering as well as high accuracy to handle large networks.

The motivation of this work comes from the fact that node degree distribution of real world
networks is not random, rather different nodes have varying degrees. Specially with the pres-
ence of scale free behavior, lots of nodes tend to have few connections whereas a few nodes
dominate the network connectivity with a large number of connections. These networks form
a single connected component but a careful analysis suggests that nodes having high degree,
play an important role in keeping the entire network connected. Using a Topological Decom-
position of networks based on degree, we propose a new clustering algorithm which is quite
efficient in terms of time complexity and performs as well as existing clustering algorithms in
terms of the quality of clustering produced. We also introduce some high speed heuristics that
help to reduce the size of the network in liner time in terms of number of nodes.

Throughout this article, we use the term network to refer to an undirected and unweighted
simple graph represented by G. We represent the number of nodes by n and the number
of edges by m. Rest of the paper is organized as follows: Section 2 discusses a number
of clustering algorithms present in the literature. In section 3, we explain the details of the
topological decomposition. We then introduced the TDHC algorithm in section 4. In section
5, we present real world data sets used for experimentation. We compare the results of the
TDHC algorithm with existing algorithms in section 6, finally concluding in section 7.

2 Related Work
Many different approaches have been proposed to discover clusters in complex networks.

For example, Girvan and Newman (Girvan and Newman (2002)) used edge betweenness to
produce a divisive hierarchical clustering algorithm. The basic idea is to identify intra cluster
edges as compared to inter cluster edges. Edges lying between clusters will have a higher be-
tweenness centrality as compared to edges within a cluster. The clustering algorithm removes
edges with high betweenness centrality to identify clusters and recalculates the betweenness
centrality. The algorithm performs well in the detection of clusters but suffers from high time
complexity. The worst case time complexity is given by O(m2n). Although practically the
algorithm runs faster than its worst case but still has a high time complexity due to the calcu-
lation of betweenness centrality in each iteration since in each iteration, the total number of
nodes are divided by a certain factor before recalculating the betweenness centrality.

Wu et al.(Wu et al. (2004)) introduce a multilevel mesh structure to cluster large networks.
The clustering algorithm uses Betweenness centrality and node degree to identify a set of

- 84 -



Zaidi et Melançon

representative nodes. All the other nodes are assigned the nearest representative nodes to obtain
clusters. The agglomerative process is repeated to obtain a hierarchical clustering which they
call multilevel mesh. At each level, the user chooses a branching factor which determines the
number of clusters for that level. This number might not represent the actual number of clusters
in the dataset as they are determined by the user without the use of any heuristic or statistical
measure. The overall complexity of the algorithm is given by O(m2n).

Boccaletti et al. (Boccaletti et al. (2007)) propose a clustering method based on the cluster
de-synchronization properties of phase oscillators. Starting from a fully synchronized state
of the network, a dynamical change in the weights of the interactions that retain information
on the original betweenness distribution, yields a progressive hierarchical clustering that fully
detects the dense communities. Since the initial calculation of betweenness takes O(n2), the
algorithm scales quadratically as the number of nodes increase.

Newman (Newman (2004)) presents a faster agglomerative hierarchical clustering algo-
rithm which is based on a quality function called modularity Q. The algorithm repeatedly joins
communities together in pairs, choosing at each step, the join that results in the greatest in-
crease in Q. The time complexity for the algorithm is given by O((m + n)n) which scales
quadratically in terms of number of nodes in the graph.

An important class of clustering algorithms called Spectral Clustering algorithms have
attracted considerable interest (Spielman and Teng (1996)). The biggest advantage of these al-
gorithms is that they are able to detect clusters without a specific form as compared to classical
algorithms such as k-means. Moreover they are well suited for large size networks as well. But
these algorithms are suited only of data sets where the similarity graphs are sparse (Luxburg
(2007)). For graphs having scale free properties, where a few nodes are connected to lots of
nodes, results in non-sparse similarity graphs. An example of the type of graphs we have with
small world and scale free properties is shown in Figure 1(a). The graph is layed out using
a Force Directed algorithm (Hachul and Jünger (2005)). These algorithms are well known to
put densely connected nodes, closer to each other and sparsely connected nodes distant to each
other. From the figure, it is quite clear that the algorithm fails to do this with small world
and scale free graphs due to the presence of high degree nodes. Another draw back of spectral
clustering algorithms is that the results are highly dependent on the choice of initial parameters
and different parameters can result in big changes in the clustering (Luxburg (2007)). Select-
ing correct parameters require the user to be well aware about the data and the clusters to be
generated which can be problematic.

Wu and Huberman (Wu and Huberman (2004)) model a network as an electrical circuit
and the clustering algorithm is based on the notion of voltage drops across networks. The idea
is that each edge is considered to be a resistor between two nodes. By solving Kirchhoff’s
equations (Alexander and Sadiku (2008)) the voltage value can be obtained for each node.
Using this voltage value, the community of the node can be determined. Although the total
running time of the algorithm is O(m + n) but the algorithm has to be repeated a certain
number of times to achieve a certain precision. Another algorithm that performs well in terms
of execution time is based on a heuristic method that optimizes modularity (Blondel et al.
(2008)). The algorithm does not use normalized modularity which is considered to be a flaw
(Fortunato and Barthélemy (2007)).

Efficient algorithms to cluster networks with only small world properties have been pro-
posed like (Auber et al. (2003); van Ham and van Wijk (2004)). These systems perform well

- 85 -



Topological Decomposition for High Speed Clustering

if the topology of the network follows small world properties but fail to perform in the pres-
ence of scale free properties. This is due to the fact that in a scale free network, a few nodes
dominate the entire networks connections and makes it difficult to identify the clusters.

3 Topological Decomposition of Graphs
In this section, we describe a method introduced earlier by authors (Zaidi and Melançon

(2010)) to detect the presence of densely connected nodes in a network in relatively quick time.
The method is based on a decomposition technique which exploits the fact that nodes having
high degree are responsible for keeping large size networks as a single connected component.

To decompose the network into several components, Maxd-Degree Induced Subgraphs
(Maxd-DIS) are constructed where Maxd-DIS is an induced subgraph constructed by consid-
ering only the nodes having degree at most d in graph G. Mathematically for a graph G(V,E)
where V is a set of nodes and E is a set of edges, the Maxd-DIS is defined as G′(V ′, E′)
such that V ′ ⊆ V and E′ ⊆ E and ∀u ∈ V ′, DegG(u) ≤ d where d can have values
from 0 to the maximum node degree possible for a network. We construct Maxd-DIS for
d = {0, 1, · · · ,MaxDeg} to obtain a set of graphs (G0, G1, · · · , GMaxDeg). Construction
of a Maxd-DIS can be achieved in O(n) time and if it is repeated for all possible values of
node degree, the process can be performed in O(n ∗MaxDeg) time where MaxDeg is the
maximum possible degree of a node in graph G. Consider the example of the Author network
shown in Fig. 1. The entire network is shown in Fig. 1(a), where as Fig. 1(b) shows a small
portion being focused where the encircled nodes represent densely connected nodes or more
precisely cliques. Fig. 1(c) and (d) show portions of the Max3-DIS and Max5-DIS drawn using
a force directed algorithm (Hachul and Jünger (2005)). In these two figures, it is quite easy to
visually detect the cliques or the densely connected nodes.

The inspiration of our clustering algorithm comes from this visualization. Fig. 1(c) and
(d) clearly show that nodes get disconnected in the absence of high degree nodes and these
disconnected components can be easily identified as subgraphs. We argue that from these
subgraphs, the problem of finding clusters can be simplified as a problem of counting number
of edges and number of nodes in a connected component. Calculating a connected component
is a problem that can be solved in O(n+m) time. Similarly the counting of nodes and edges
also runs in linear time. Keeping in mind that n and m can be very small depending upon
the value of d chosen, this step runs quite faster then its worst case as there are only a limited
number of nodes and edges in Maxd-DIS as compared to the entire graph G.

4 Proposed Clustering Method: TDHC
From the topological decomposition, the idea of building a clustering algorithm is quite

intuitive. Since in these subgraphs, we can identify the set of nodes that are densely connected
to each other in quick time, they can be grouped to form clusters. So a hierarchical clustering
algorithm can be built which calculates the Maxd-DIS for varying values of d and groups
the densely connected nodes. The notion of how to define density is addressed later in this
section. The number of iterations do not depend on n or m of G but on a factor of maximum
degree a node can have in G. Along with the detection of densely connected nodes through

- 86 -



Zaidi et Melançon

FIG. 1 – Co-Authorship Network (a) Entire Network (b) Focus on a Small Portion (c) Part of
Max3-DIS (d) Part of Max5-DIS

Maxd-DIS, we also introduce several heuristics that optimize the performance of the clustering
algorithm. Note that the heuristics only improve the convergence speed of the algorithm to a
single cluster, and the basic algorithm can be executed without using these heuristics. All these
steps are highly efficient in terms of time complexity and are discussed below.

Sink using K-Sink Operation: We define the K-Sink operation as follows: The nodes
having degree 1 in a network suggests that they are only connected to a single node. We merge
the 1-degree nodes into their neighbors creating a new node for each such merger. The 1-degree
nodes merged into the neighbors are called the Sinkers. The nodes in which the 1-degree nodes
get merged are called the Sinkholes. This operation is justified because a 1-degree node cannot
be clustered with any other node as it is simply connected to only one node. We call this
operation, a 1-Sink operation and it is illustrated in Fig. 2(a) where node 2 is the sinker and
node 1 is the sinkhole. If two nodes have degree 1 and are connected to each other, this means
that they are disconnected from the rest of the network and in this case either of the node can
be chosen to be the sinker and the other as the sinkhole.

Similarly we define a 2-Sink operation, consider two nodes, say node 2 and node 3 both
having a degree 2 (Fig. 2(a)). They are connected to each other, and to another node say node
1, with a higher degree, nodes 2 and 3 can be sinked into node 1 as they are only connected
to either each other or node 1. This operation is illustrated in Fig. 2(a) and we call this 2-Sink
operation as Type A. Just as in the case of 1-Sink, if we find a set of nodes each having degree
exactly equal to 2 and connected to each other, this means that they are not connected to the
rest of the graph, in this case any node can be chosen to be the sinkhole and the other two
nodes to be the sinker. Another type of 2-Sink operation, Type B, is when a node of degree 2,

- 87 -



Topological Decomposition for High Speed Clustering

FIG. 2 – (a)K-Sink operation illustrated with 1-Sink and 2-Sink operations. (b) Tightening
Operation where Nodes 1 and 2 get disconnected leaving the other nodes densely connected.

is connected to two other nodes of degree more than 2. Irrespective of whether these two high
degree nodes are connected to each other or not, the two degree node can only be clustered with
either one of these two nodes. What we do is simply put the two degree node with the neighbor
having a highest degree and create an edge between this cluster and the other neighbor.

For the implementation of the algorithm, we only use 1-Sink and 2-Sink operations al-
though the idea can be generalized to sink nodes up to some constant K. Both 1-Sink and
2-Sink operations can be performed in time O(n). But a generalized implementation to in-
corporate K-Sink operation will no longer remain linear and since our goal is to keep the time
complexity bounded by a linear function or as close as possible to a linear function we avoid
using a generalized K-Sink operation. The order in which these K-Sink Operations were per-
formed is important, where first we perform a 1-Sink operation, followed by a Type A and
Type B 2-Sink Operations. Then the Type A 2-Sink operation is repeated finally followed by
a 1-Sink Operation. Rememeber, in most real world networks, the node degree distribution is
not random, but is exponential. And there are lots of nodes with low node degree and only
a few nodes with high node degree. The K-Sink operation is desinged to cluster these nodes
quickly, the basic idea being that if a node is connected to a single node, it should be clustered
immediately with this node. We repeat that this heuristic is quite logical and does not effect the
quality of clustering, unless singleton clusters are allowed to be generated, which might not be
interesting for a domain expert to analyze.

Maximum Degree Induced Subgraph: The next step in the algorithm is to create a Maxd-
DIS with a small value of d. Due to this small value, the network might break into several
components disconnected to each other as shown in Fig. 1(c) and (d).

Tightening: Disconnect Loosely Connected Nodes: After obtaining the Maxd-DIS, we
perform an operation that we call Tightening. We look at the nodes having degree 1 in this
subgraph and we simply remove the edges connecting degree 1 nodes from the induced sub-
graph as shown in Fig. 2(b). This process helps us to make the connected components found
in the subgraph more denser. Moreover, since it is not certain whether the 1 degree nodes in
the Maxd-DIS do actually belong to the cluster of the node with which it is connected, this
step ensures that nodes are only assigned to clusters that they belong to. The step can be easily
performed in time O(n) where n can have small values as compared to the entire graph G.

Calculation of Connected Components: Once we have the Maxd-DIS, we calculate all
the connected components in the subgraph. We use a breadth first search algorithm (BFS)

- 88 -



Zaidi et Melançon

starting from a node and iterating through its neighbors to find the connected component it
belongs to. Once we have identified nodes connected to the start node, we restart the BFS
from a node that has not yet been visited. The algorithm runs in O(n+m) time.

Grouping Densely Connected Components: The final step is to group the connected
components that are densely connected to each other. We explain how to evaluate if the com-
ponent is dense enough later in this section. Once we have found the densely connected com-
ponents in the subgraph, we cluster these nodes in graph G. We replace this cluster of nodes
with a single node in G. Multiple edges connecting this new cluster node to other nodes are
removed to make sure that the graph remains simple. We only consider components of size
greater than 2 nodes to be clustered together.

Clustering Algorithm: Now that we have explained all the necessary steps, the Topolog-
ical Decomposition and Heuristics for Clustering (TDHC) is presented as algorithm 1. The
algorithm starts by calculating a MaxD2-DIS in order to search for triangles representing three
nodes and connected to each other. For nodes having degree 1, they get sinked in the 1-Sink
step and thus we do not need to run the algorithm for MaxD1-DIS. Note that in the algorithm,
when a step is performed on G, the size of G in terms of number of nodes is decreased as
nodes within G are grouped together to form clusters.

Algorithm 1 TDHC Algorithm
Input G(V,E)
d← 2
increment← 1
while Number_of_Nodes(G) > 1 do

K-Sink(G)
G′ = Create_Maxd−DIS(G)
Tightening(G′)
Calculate_Connected_Component(G′)
Group_Densely_Connected_Component(G′)
d← d+ increment

end while

All the processing steps have a linear time complexity as shown in previous sections. The
number of iterations required to converge towards a solution no longer depends on the number
of nodes nor the edges but on the maximum degree a node can have. Moreover, as in the given
algorithm, we have chosen an increment of 1 at every iteration, in this case, the algorithm
executes at most d times. The choice of the value for the variable increment depends on the
user, which can be increased depending on how the results vary as a function of this value.
A high increment value means less number of iterations, but risks in less dense components
found. Currently we have kept the increment value to 1, but we intend to experiment with this
parameter in the future to study the variation in the quality of clusters produced.

The average case time complexity of the entire algorithm can be expressed asO(d∗(m+n))
where d is the maximum degree of a node in graph G. An important observation about the
clustering algorithm is that it uses both the Divisive as well as Agglomerative approaches to
cluster graphs. The divisive part comes from the fact that we build degree induced subgraphs

- 89 -



Topological Decomposition for High Speed Clustering

and the agglomerative part is represented when we cluster nodes during K-Sink operation and
grouping densely connected components.

Flattening the Clusters: The hierarchical clustering thus produced can have many clusters
with 2 or 3 nodes due to the K-Sink operation explained earlier. We simply parse recursively
through different clusters to remove these small size clusters and merge them into bigger size
clusters. To produce a partitional (flat) clustering, using the same algorithm, all we need to
do is replace the condition in the algorithm where we want to converge to a single node by
the number of clusters we want to obtain in the network. Once we get to this number, we can
flatten the hierarchy to obtain a partitional clustering. We have used this same approach to
compare the results of the TDHC algorithm with the other clustering algorithms.

Density Function: There are several definitions of how to calculate the density of a graph
(Melançon (2006)). For simplicity we use the node to edge ratio (n/m) to refer to the density
of the graph. Melançon (2006)) argues that the density of a graph varies as a function of
application domain giving real world examples. For the proposed clustering algorithm, we use
a density function to determine how well a set of nodes is connected to each other. Based on
the arguments and examples provided in (Melançon (2006)), we argue that we cannot have a
generic density value set as a threshold to decide whether a set of nodes is connected enough
or not. Moreover, the question of whether a set of nodes are connected well enough to be
clustered, depends not only on the density of the entire graph but on the underlying structure
of the network as well.

To resolve this problem, we propose a floating density function i.e. we propose a set of
functions starting from high density values to progressively less dense functions. The idea is
to try to find highly dense communities first, for all possible values of the Maxd-DIS, and then
replace the density function with a less denser function. We start by looking for the maximum
number of edges possible for a set of nodes and eventually end up looking for the minimum
number of edges possible for a set of nodes to be connected. We cluster a set of nodes if the
number of edges m is:

m = n(n− 1)/2 m ≥ n(n− 1) ∗ 0.9/2
m ≥ n(n− 1) ∗ 0.6/2 m ≥ n(n− 1) ∗ 0.4/2
m ≥ (1.5 ∗ n)− 0.5 m ≥ n
The set of equations represent a gradual decrease in the node-edge density required for a

group of nodes to be considered as dense enough to be clustered together. Although using
the floating equation idea can effect the number of iterations required to cluster the entire
data set, but it assures us that the clusters found would be dense. This is the only control
parameter that is required by the proposed algorithm and varies from one dataset to the other.
The overall complexity of the algorithm remains the same as the number of equations ranges
from a constant value of 2 to 6.

5 Experimentation
Data Sets: The first data set is the Co-Authorship network of scientists working on net-

work theory and experiments(Newman (2006)). The second data set is a network mapping data
which consists of paths from a test host towards other networks on the Internet containing rout-
ing and reachability information (www.opte.org). Since the Divisive Clustering algorithm
has a high time complexity, we only consider a subset of the actual data with 1049 nodes and

- 90 -



Zaidi et Melançon

1319 edges. The third data set is a Protein interactions network used by (Gavin (2002)). The
data is available from the website(http://dip.doe-mbi.ucla.edu/dip) and contains
1246 nodes and 3142 edges. Disconnected nodes (80 nodes) were removed from the data. The
choice of these data sets is based on the criteria that all these networks belong to different
classification of networks as described in the literature (Newman (2003)). The author network
represents a social network of collaboration, the internet network represents a technological
network and the protein network represents a biological network. All these networks have an
exponential (not necessarily following power-law) degree distribution. The Clustering Coeffi-
cient of the author network is 0.74 and the average path length is 6.04, that of internet network
is 0.005 and 6.42, and finally for the protein network is 0.23 and 4.89 respectively.

Clustering Algorithms: To cluster these data sets, we use two known clustering algo-
rithms, the Bisecting K-Means algorithm (Steinbach et al. (2000)) and the Divisive Clustering
algorithm based on Edge Centrality (Girvan and Newman (2002)). The choice of these al-
gorithms is based on the criteria that these algorithms do not try to optimize or influence the
clustering algorithm based on the density or some other cluster quality metric as compared to
other algorithms present in the literature such as (Newman (2004)). Moreover they are known
to perform well for a number of real world data sets (Girvan and Newman (2002)). We also use
the Strength Clustering algorithm proposed by (Auber et al. (2003)). The algorithm has been
shown to perform well for the identification of densely connected components as clusters.

Cluster Evaluation Metrics: To evaluate the quality of clustering produced, we use the
following metrics. Modularity(Q) (Newman and Girvan (2004)) (Q metric) is a metric that
measures the fraction of the edges in the network that connect within-community edges minus
the expected value of the same quantity in a network with the same community divisions but
random connections between the vertices. If the number of within-community edges is no
better than random, we will get Q = 0. Values approaching Q = 1, which is the maximum,
indicate strong community structure. The second metric used by Auber et al. (Auber et al.
(2003)) is called the MQ metric. It comprises of two factors where the first term contributes
to the positive weight represented by the mean value of edge density inside each cluster. The
second term contributes as a negative weight and represents the mean value of edge density
between the clusters. Finally the Relative Density (RD) (Mihail et al. (2002)) of a cluster
calculates the ratio of the edge density inside a cluster to the sum of the edge densities inside
and outside that cluster. The final RD is the averaged sum of the these individual relative
densities for all clusters.

6 Results and Discussion
As shown in the previous sections the algorithm’s average case time complexity is O(d ∗

(m+ n)), but in reality, the algorithm runs much faster than its average case. This is because
as the algorithm progresses, the nodes are aggregated into clusters and the size of the network
becomes smaller. We compare the results of the TDHC clustering algorithm with (Girvan and
Newman (2002); Newman (2004); Auber et al. (2003)) in Table1. From the different values,
it is quite clear that the TDHC algorithm performs as well as the other clustering algorithms.
Although using the RD metric, its performance is not as good as the other clustering algo-
rithms. These differences highlight the behavior of various cluster evaluation metrics present
in the literature. Nevertheless, considering the time complexity of TDHC compared to the

- 91 -



Topological Decomposition for High Speed Clustering

Author Internet Protein
Algorithm MQ Q RD MQ Q RD MQ Q RD
Div. Clus. 0.53 0.77 0.63 0.32 0.79 0.69 0.31 0.63 0.49
Bis. K-Means 0.42 0.77 0.63 0.41 0.59 0.58 0.41 0.33 0.31
Strength 0.83 0.26 0.23 0.50 0.35 0.55 0.52 0.16 0.29
TDHC 0.55 0.82 0.42 0.42 0.85 0.49 0.38 0.44 0.23

TAB. 1 – Results of Divisive Clustering based on Edge Distribution (Div. Clus.), Bisecting
K-Means (Bis. K-Means) and Strength Clustering algorithms with the TDHC algorithm.

FIG. 3 – Linear Running time of the TDHC algorithm with increasing graph size.

other algorithms, empirical results of TDHC show that the algorithm performs well on differ-
ent data sets. We do not claim that our algorithm produces better quality results for different
types of networks and cluster evaluation techniques but we show that our algorithm performs
as well as other algorithms. The major contribution of the algorithm is the low asymptotic time
complexity which enables us to run the algorithm for large size networks.

Figure 3 shows the execution time of TDHC algorithm for graphs of increasing size in
terms of number of nodes. The graphs were generated using artificial network generation
model for small world and scale free graphs using the model of Klemm and Eguiluz (2002).

Analyzing the algorithm, we try to exploit two important characteristics of networks, the
degree distribution and the clustering coefficient. The Topological decomposition uses the fact
that real world networks do not have a uniform degree distribution, thus the decomposition
helps to break the network into several components. And on the other hand, the networks
having high clustering coefficient represent the presence of densely connected nodes in the
network, which can be grouped together to form clusters. The idea of floating density function
works well for networks that do not have high clustering coefficient (See Internet Network) as
we try to group nodes which are less densely connected. The results show that the algorithm
performs well for different types of networks.

7 Conclusion and Future Research Directions
In this paper we have used Heuristics and a technique based on the Topological Decom-

position of the network to develop a high speed clustering algorithm. The low asymptotic

- 92 -



Zaidi et Melançon

time complexity of the algorithm opens new horizons to the domain of network analysis and
clustering. As shown by the results, the proposed algorithm performs as well as other existing
algorithms in terms of accuracy but largely out performs them in terms of time complexity.

From this study, there are many questions that need to be further explored in detail and
presents new and challenging research opportunities. For example the K-Sink operation as an
important utility to reduce the complexity of scale free networks and clustering them based on
this operation only. The Maxd-DIS as an important decomposition of small world networks
for clustering. We intend to perform extensive study using the presented topological decom-
position and expect to find new and interesting results.

References

Alexander, C. and M. Sadiku (2008). Fundamentals of Electric Circuits. McGraw-Hill.
Auber, D., Y. Chiricota, F. Jourdan, and G. Melancon (2003). Multiscale visualization of small

world networks. In INFOVIS ’03: Proceedings of the IEEE Symposium on Information
Visualization, pp. 75–81.

Barabási, A. L. and R. Albert (1999). Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512.

Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre (2008). Fast unfolding of
communities in large networks. J. Stat. Mech. 2008(10), P10008+.

Boccaletti, S., M. Ivanchenko, V. Latora, A. Pluchino, and A. Rapisarda (2007). Detection of
complex networks modularity by dynamical clustering. Physical Review E 75.

Fortunato, S. and M. Barthélemy (2007). Resolution limit in community detection. Proceed-
ings of the National Academy of Sciences 104(1), 36–41.

Gavin (2002). Functional organization of the yeast proteome by systematic analysis of protein
complexes. Nature 415(6868), 141–147.

Girvan, M. and M. E. J. Newman (2002). Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99, 8271–8276.

Hachul, S. and M. Jünger (2005). Drawing large graphs with a potential-field-based multilevel
algorithm. Graph Drawing, 285–295.

Klemm, K. and V. M. Eguiluz (2002). Growing scale-free networks with small world behavior.
Physical Review E 65, 057102.

Luxburg, U. (2007). Tutorial on spectral clustering. Statistics and Computing 17(4), 395–416.
Melançon, G. (2006). Just how dense are dense graphs in the real world?: a methodological

note. In BELIV ’06: Proc. of the 2006 AVI workshop on BEyond time and errors, pp. 1–7.
Mihail, M., C. Gkantsidis, A. Saberi, and E. Zegura (2002). On the semantics of internet

topologies, gitcc0207. Technical report, College of Comp., Georgia Institute of Tech.,USA.
Newman, M. E. (2001). Scientific collaboration networks. i. network construction and funda-

mental results. Phys Rev E Stat Nonlin Soft Matter Phys 64(1 Pt 2).
Newman, M. E. and M. Girvan (2004). Finding and evaluating community structure in net-

works. Phys Rev E Stat Nonlin Soft Matter Phys 69(2 Pt 2).

- 93 -



Topological Decomposition for High Speed Clustering

Newman, M. E. J. (2003). Structure and function of complex networks. SIAM Review 45, 167.
Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks.

Physical Review E 69, 066133.
Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of

matrices. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 74(3).
Schaeffer, S. E. (2007). Graph clustering. Computer Science Review 1(1), 27–64.
Spielman, D. A. and S.-H. Teng (1996). Spectral partitioning works: Planar graphs and finite

element meshes. In In IEEE Symposium on Foundations of Computer Science, pp. 96–105.
Steinbach, M., G. Karypis, and V. Kumar (2000). A comparison of document clustering tech-

niques. Technical report, Dept. of Computer Science and Engineering, Univ. of Minnesota.
van Ham, F. and J. van Wijk (2004). Interactive visualization of small world graphs. In

INFOVIS 2004. IEEE Symposium on Information Visualization, pp. 199–206.
Watts, D. J. and S. H. Strogatz (1998). Collective dynamics of ’small-world’ networks. Na-

ture 393, 440–442.
Wu, A. Y., M. Garland, and J. Han (2004). Mining scale-free networks using geodesic cluster-

ing. In KDD ’04: Proc. of ACM SIGKDD, pp. 719–724.
Wu, F. and B. A. Huberman (2004). Finding communities in linear time: A physics approach.

The European Physics Journal B 38, 331–338. informal publication.
Zaidi, F. and G. Melançon (2010). Identifying the Presence of Communities in Complex

Networks Through Topological Decomposition and Component Densities. In EGC 2010,
Extraction et Gestion de Connaissance, Volume E-19, RNTI. 163-174.

Résumé
Avec l’accroissement exponentiel de la taille des données et des réseaux, il devient né-

cessaire de développer des techniques nouvelles et rapides d’analyse et d’exploration de ces
réseaux. De plus, l’émergence de propriétés du petit monde et graphes sans échelle dans les
réseaux du monde réel a grandement stimulé l’activité dans le domaine de l’analyse de réseau
et d’exploitation des données. Le regroupement demeure une technique fondamentale pour ex-
plorer et organiser ces réseaux. La difficulté consiste à trouver un algorithme de regroupement
qui fonctionne bien en termes de qualité de regroupement et qui soit efficace en termes de
complexité de temps.

Dans cet article, nous proposons un algorithme de regroupement rapide qui combine cer-
taines heuristiques avec une Décomposition Topologique pour obtenir un regroupement. L’al-
gorithme que nous appelons Décomposition Topologique et Heuristiques pour Regroupement
(TDHC) est très efficace en termes de complexité asymptotique de temps comparé aux autres
algorithmes existant dans la litérature. Nous introduisons également un nombre d’Heuristiques
pour compléter l’algorithme de regroupement qui accroit la vitesse du processus de regroupe-
ment en maintenant la haute qualité du regroupement. Nous montrons l’efficacité de la méthode
de regroupement proposée sur différentes séries de données du monde réel et nous comparons
ses résultats avec des algorithmes de regroupement bien connus.

- 94 -


