
Antipattern Detection in Web Ontologies: an Experiment
using SPARQL Queries

Catherine Roussey∗, Oscar Corcho∗∗, Ondřej Šváb-Zamazal∗∗∗, François Scharffe∗∗∗∗,
Stephan Bernard∗

∗Irstea/Cemagref, 24 Av. des Landais, BP 50085, Aubiére, France
∗∗Ontology Engineering Group, Universidad Politécnica de Madrid, Spain

∗∗∗Knowledge Engineering Group, University of Economics Prague, Czech Republic
∗∗∗∗LIRMM, Université de Montpellier, France

Abstract. Ontology antipatterns are structures that reflect ontology modelling
problems because they lead to inconsistencies, bad reasoning performance or
bad formalisation of domain knowledge. We propose four methods for the de-
tection of antipatterns using SPARQL queries. We conduct some experiments to
detect antipattern in a corpus of OWL ontologies.

1 Introduction
The concept of knowledge modelling pattern or ontology design pattern is used to refer

to modelling solutions that allow solving recurrent knowledge modelling or ontology design
problems, Presutti et al. (2008). Antipatterns are patterns that are ineffective or far from op-
timal in practice, representing worst practices about how to structure and design an ontology.
There are several tools that can be used for the detection of antipatterns. Pellint 1 focuses on
the detection and repair of antipatterns to improve ontology reasoning performance. Tools like
Explanation Workbench described in Horridge et al. (2008), or SWOOP described in Kalyan-
pur et al. (2005), provide justifications of inconsistencies in ontologies based on the outputs of
DL reasoners. However, all these contributions need a reasoner to provide their justifications.

Our antipattern detection methods implement a more general approach, that can work on
any antipattern and can be applied without the use of a reasoner, something that is very useful
with large ontologies and when the number of errors in an ontology is so large that the previous
justification systems are not able to handle them properly, providing timeouts. To detect the se-
lected antipattern, we have transformed it into sets of SPARQL queries. In general, antipatterns
correspond to several queries, because they are abstract structures that can have several logical
forms when expressed in Description Logics (DL). Moreover we have proposed several de-
tection methods. We can switch on or off inferences before running SPARQL queries. We can
also transform the original ontologies into a form where simpler SPARQL queries can be run.

This paper is structured as follows. Section 2 briefly describes the antipattern that will
be used to run our experiments. Section 3 will describe the methods we have followed in
order to run the experiments. Section 4 describes the experiment setup and the results of the

1. http://pellet.owldl.com/pellint

- 263 -

Antipattern Detection

experimentation. Finally, Section 5 provides some conclusions to the work done, based on the
experiment results, and outlines the next steps to be done in our work.

2 A sample antipattern OnlynessIsLoneliness (OIL)
A set of patterns commonly used by domain experts in their implementation of OWL on-

tologies are identified in Corcho et al. (2009). These patterns resulted in unsatisfiable classes or
modelling errors, due to misuse or misunderstanding of DL expressions. In this section we will
describe an antipattern which is the one that, our experience has shown, is easier to understand
and debug by domain experts.

C3 v ∀R.C1;C3 v ∀R.C2; Disj(C1, C2); (1)
C3 ≡ ∀R.C1;C3 v ∀R.C2; Disj(C1, C2); (2)
C3 ≡ ∀R.C1;C3 ≡ ∀R.C2; Disj(C1, C2); (3)

The ontology developer created a universal restriction to say that C3 instances can only be
linked with property R to C1 instances. Next, a new universal restriction is added saying that
C3 instances can only be linked with R to C2 instances, with C1 and C2 disjoint. In general,
this is because the ontology developer forgot the previous axiom in the same class or in any of
the parent classes.

3 SPARQL-based detection of OIL antipattern
In this section we describe the different methods that we have elaborated in order to de-

tect antipatterns in OWL ontologies by means of SPARQL queries, based on the usage of the
PatOMat ontology pattern detection tool 2. This tools is part of the PatOMat suite of tools,
which is focused on the detection of patterns in ontologies and their transformation. This de-
tection tool is based on Jena 2.6.2 3 and Pellet 2.0.1 4, and enables the processing of a set of
SPARQL queries over a set of ontologies, producing a report in terms of numbers of patterns
detected (SPARQL queries results) and details for each ontology. The axioms over which the
pattern detection tool is run can be the axioms asserted in the ontologies, or a combination of
asserted and inferred axioms.

We query OWL ontologies by means of a query language (SPARQL) that is agnostic about
the underlying knowledge representation model of OWL: we are actually querying the RDF
serialization of OWL. Other options that are available in the current state of the art for OWL
ontology pattern matching and transformation are the OPPL language and its associated tools
described by Iannone et al. (2009), or the more recent OWL querying syntax Terp 5, based
on the OWL Manchester syntax. If SPARQL is the language dedicated to query RDF triples,
OPPL and Terp are dedicated to query the RDF serialization of OWL expressions because they
contain OWL constructs like subClassOf, ComplementOf, DisjointWith. Nevertheless to make

2. The release used for this paper is at: http://eso.vse.cz/~svabo/patomat/detectionTool.zip
3. http://jena.sourceforge.net/
4. http://clarkparsia.com/pellet/
5. http://clarkparsia.com/weblog/2010/04/01/pellet21-terp/

- 264 -

C. Roussey et al.

the construction of SPARQL queries easier, we develop a query translator that transforms an
input query, using the SPARQL-DL abstract syntax defined in Sirin and Parsia (2007), into a
SPARQL query.

Transforming antipatterns into SPARQL-DL queries is not a trivial task. For each antipat-
tern, several SPARQL-DL queries are needed to detect antipattern occurrences in OWL class
definition. The difficulties come from several points : - An antipattern can be associated to
several logical formulae in DL syntax. For example, we presented 3 formulae for OIL an-
tipatterns. - Some logical formulae are composed of several atomic axioms. 6 For example,
the three formulae of the OIL antipattern contains three atomic axioms. - Ontology developer
may have very different implementation style when designing an OWL ontology. For example,
some developers may prefer to write long class definition. In that case, a class is defined by a
conjunction of unamed classes: C v (∃R.X)u (∀R.Y)u Others may prefer to write short
definitions. A class is defined by a set of atomic axioms: C v ∃R.X;C v ∀R.Y ;C v
Thus for an antipattern formula, an atomic axiom can be located at different places in the class
definition. - An atomic axiom can belong to the class definition or can be inherited from a
parent class definition. - An atomic axiom can be stated by the ontology developer or infered
by a reasoner.

To build our queries, we first imagine different versions of each antipattern formulae using
the SPARQL-DL abstract syntax. We try to imagine where an atomic axiom can be stated by
the ontology developer in a class definition. We limit our imagination to class definitions that
have at most four conjunctions. We embed in those queries some of the inferences that should
be done by a reasoner. We take in account the fact that:

– disjoint axioms are symetric Disj(C1, C2) � Disj(C2, C1),
– disjoint axiom can be inferred from a logical negation C1 v ¬C2 � Disj(C1, C2).
Then we automatically translate each SPARQL-DL queries into SPARQL ones. We also

automatically generate SPARQL queries which merges all the different versions.

FIG. 1 – The antipattern detection methods

6. We defined an atomic axiom as a condition (necessary v or sufficient ≡) associated to a named class C using
at most one constructor (∀, ∃, ¬ or u). All the parameters should be named. An example of atomic axiom can be
C v ∃R.X .

- 265 -

Antipattern Detection

As shown in figure 1, we will describe now the four methods that we have followed in
order to detect antipatterns in the ontology corpus:

-Method 1: Use of SPARQL Queries over Asserted OWL Ontology Axioms. In this ap-
proach, we take into account that SPARQL query engines per se do not consider inferences
that can be done with OWL ontologies. However, our assumption is that there will be cases
where ontologies cannot be processed by a reasoner or the reasoner results cannot be obtained
in a reasonable time. This normally happens with large ontologies or with ontologies with
a large number of errors.- Method 2: Use of SPARQL Queries over Materialised Inferences
on OWL Ontologies. When it is possible to use a reasoner, we materialise all the inferences
that can be done by an OWL reasoner on the ontologies and then run SPARQL queries over
the resulting ontologies, called materialised ontologies. - Method 3 and 4: Use of SPARQL
Queries over Transformed OWL Ontologies. Due to the complexity of creating a large number
of SPARQL queries for an antipattern and to the fact that different ontology developers may
have different implementation styles, we propose to follow a two step process where we apply
transformations before executing the queries. Transformations have two goals: to harmonise
the implementation style of the ontology and to simulate some of the axioms infered by rea-
soner. The current transformations that we apply are: - When the ontology contains C1 ≡ C2

where C1 and C2 are named classes, we add two new axioms C1 v C2 and C2 v C1. - When
a named class is defined by conjunction of named or unamed classes, we split it into several
simpler axioms. Take as example the class definition: C v X u Y , in that case we add two
axioms C v X and C v Y . - When a parent class contains an axiom, we add it also in its
direct child class. Take as example the definition of the class: C1 v ∃R.X . If C1.1 is a direct
child of C1, C1.1 v C1, we add the axiom C1.1 v ∃R.X . At that point, this transformation is
not repeated over the class hierarchy.

In this case, we have explored the behaviour of the SPARQL query checking method both
on the asserted ontology after transformation and on the materialised ontology (also after trans-
formation).

4 Finding antipatterns in real-world ontologies
In this section, we describe the results of our experiments with a corpus of ontologies ex-

tracted from those publicly available on the Web and indexed by the Watson semantic search
engine 7. We will first describe the ontology corpus, and then the results of applying the differ-
ent methods described in Section 3 to this ontology corpus.

4.1 Experiments
The ontologies used in our experimentation comes from our experience in ontology debug-

ging task. Five of them have already been used for the creation and update of the antipattern
catalogue presented in Corcho et al. (2009). It contains the HydrOntology (which has 159
classes whose 114 are unsatisfiables), the Forestal Ontology (which has 93 classes whose 62
are unsatisfiable), the Tambis ontology (which has 395 classes whose 112 are unsatisfiable),
the Sweet Numeric ontology (which has 2364 classes whose 2 are unsatisfiable) and the Uni-
versity ontology of the MIND Lab (which has 29 classes whose 7 are unsatisfiable). Notice

7. http://watson.kmi.open.ac.uk/

- 266 -

C. Roussey et al.

that in our experiment Hydrontology and the Tambis ontologies cannot be processed by the
Pellet reasoner in a reasonable time.

We made the following experiments over the set of ontologies, using the antipattern detec-
tion methods described in Section 3:

1. SP: Search in the original ontologies (only with asserted axioms) using SPARQL queries
and no inference.

2. SP+R: Search in the materialised ontologies (asserted and inferred axioms) using
SPARQL queries after applying a reasoner (Pellet).

3. SP_Trans: Apply transformations on the original ontologies and search (only with as-
serted axioms) using SPARQL queries and no inference.

4. SP_Trans+R: Apply transformations on the original ontologies and search in the mate-
rialisation of these harmonised ontologies.

In these experiments we also use the keyword MANUAL to refer to the manual detection
process using the basic debugging tools provided by ontology editors. This detection method
sets a baseline with respect to what can be detected on the current state of the art.

We have also run experiments, based on the previous ones, to evaluate the precision of the
antipattern detection process. We have analysed manually each of the ontologies in our set and
have assigned to each antipattern occurrence one of the following three values:

– TI (True Inconsistency): the antipattern occurrence participates in the unsatisfiability of
classes or the modelling error.

– UI (Unknown Inconsistency): the antipattern occurrence may be linked to the unsatisfi-
ability of classes or modelling error, but the evaluator is not sure about it.

– FI (False Inconsistency): the antipattern occurrence does not participate in the unsatisfi-
ability of classes or modelling error.

4.2 Results: OIL detection
The OIL pattern is composed of 3 atomic axioms. We have presented 3 formulae but more

formulae are possible, depending of the implementation style of the ontology developer. See
the ontology antipattern web site 8 for more OIL antipattern formulae. For these formulae,
we imagine that a class definition can be composed of two conjunctions parts. We defined
84 SPARQL queries. The results presented in table 1 for the detection of the antipattern are

method nb of results nb of TI nb of UI nb of FI nb of onto
manual 8 3
SP 2 2 0 0 2
SP+R 2 2 1 0 2
SP_Trans 2 2 0 0 2
SP_Trans+R 72 6 66 0 2

TAB. 1 – OIL antipattern detection.

unexpected. We notice that the disjoint atomic axiom was not detected because it is infered by

8. https://sites.google.com/site/ontologyantipattern/

- 267 -

Antipattern Detection

the reasoner. And using a reasoner produce unexpected antipattern occurrences. Thus at that
time any of our detection methods is good enought to detect OIL antipattern. We should limit
our detection method to the beginning of the OIL pattern without the disjoint axiom.

5 Conclusion and future work
In this paper we have shown how OIL antipattern can be detected using different meth-

ods that are based on the use of SPARQL queries, OWL reasoners and transformation tools.
In many cases, these antipattern detection methods are very sensitive to the implementation
style of the ontology developer. Moreover reasoners cannot be used due to bad response time
and unexpected results. Our future work will focus on the refinement of the methods that we
have proposed in this paper to improve the detection results. We will also try to detect new
antipatterns.

References
Corcho, O., C. Roussey, L. M. Vilches Blázquez, and I. Pérez (2009). Pattern-based OWL

ontology debugging guidelines. In Workshop on Ontology Patterns (WOP 2009), collocated
with the 8th International Semantic Web Conference (ISWC-2009)., CEUR Workshop pro-
ceedings, pp. 68–82.

Horridge, M., B. Parsia, and U. Sattler (2008). Laconic and precise justifications in OWL. In
Proceedings of ISWC, pp. 323–338.

Iannone, L., A. L. Rector, and R. Stevens (2009). Embedding knowledge patterns into OWL.
In Proceedings of ESWC, pp. 218–232.

Kalyanpur, A., B. Parsia, E. Sirin, and J. Hendler (2005). Debugging unsatisfiable classes in
OWL ontologies. Journal of Web Semantics 3(4), 268–293.

Presutti, V., A. Gangemi, S. David, G. de Cea, M. Suárez-Figueroa, E. Montiel-Ponsoda, and
M. Poveda (2008). NeOn deliverable d2. 5.1. a library of ontology design patterns: reusable
solutions for collaborative design of networked ontologies. NeOn Project. http://www. neon-
project. org.

Sirin, E. and B. Parsia (2007). SPARQL-DL: SPARQL query for OWL-DL. In 3rd OWL:
Experiences and Directions Workshop (OWLED2007).

Résumé
Les antipatrons de conception d’ontologies sont des structures abstraites qui reflètent des

problèmes de modèlisation. Ils peuvent mener à des incohérences logiques, de mauvaises per-
formances des moteurs d’inférences, ou des formalisations inadéquates des connaissances du
domaine. Il est donc important de détecter les antipatrons, pour corriger les ontologies. Dans
cet article nous proposons quatre méthodes de détection d’antipatrons à partir de requêtes
SPARQL. Pour évaluer nos méthodes, nous avons testé nos requêtes SPARQL sur un ensemble
d’ontologies réelles.

- 268 -

