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Abstract. Many scenarios. such as network analysis, otility monitoring, and financial applications,
generate massive streams of data. These streams consist of millions or hillions of simple updates every
hoar, and must be processed (o exiract the information described in Gny pieces. This survey provides
an introduction the problems of dorg steeam mondioring, and some of the lechmgues (hat have been
developed over recent years to help mine the data while avoiding drowning in these massive flows of
information. In particular, this tutorial introduces the fundamental techniques used to create compact
summaries of data streams: sampling, sketching, and other synopsis technigues. It describes how o
extract features such os clusters and association rules, Lastly, we see methods (o detect when and how
(he process peneraling the siream s evolving, indicating some important change has occummed.,
Eevwords: data streams, sampling, sketches, association rules, clustering, change detection.

1 Introduction

In recent yeurs there has been growing interest in the study and analysis ol dara streams: (lows of data that
are so large that it is usually impractical to store them completely data. lnstead, they must be analyzed as
they are proxduced, and high quality results guaranteed. no matter what outcomes are observed as the stream
progresses. This tiloral surveys some of the key ideas and techmigues that have been developed o analyze
and mine such massive data streams. See [13] for a longer survey from an algorithmic perspective.

Maotivation [or studying data streams comes [rom a variely of greas: scienfilic dala peneration, [rom
satellite observation to experiments on subatomic particles can generate terabytes of data in short amonnts
of time; sensor networks may have many hundreds or even thousands of nodes, each taking readings at a
high rate; and commumications nelworks generale huge quantitics of meta-data aboul the rallic passing
across them. In all cases, this information must be processed and analvzed for a variery of reasons: 1o
memitor a syslem, analyee an experiment, or W ensure that g service is running correctly. However, given
the massive size of the input, it is typically not feasible to store it all for convenient access. lnstead, we st
operate with resources much smaller than the size of the input (“sublinear™), and still guarantee a good
guality answer lor particulur computations over the data,

From these disparate settings we can abstract a general framework within which o stody them: the
streaming maodel. In fact, there are several vanations of this model, depending on what form the inpul may
take and how an algorithm must respond.

Models: Arrivals only, or Arrivals and Departures. The basic model of data streams is an arrivals-only
one. Here, the stream consists of a quantity of mples, or items, which describe the input, Typically each tuple
is 4 stmple, small object, which might indicate, for example, the wdentity of a particular object ol intercst, and
a weight or value associated with this arrival. In a nerwork, the observation of a packet could be interpreted
as a luple indicating the inlended destination of the packel, and the size of the packel payload in byles. For
another application, the same packet could be interpreted as a mple whose identity is the concatenation of
the source and destination of the packet, with a weight of [, indicating that it is a single packet, Typically, we
can inlerprel these streams as delimng massive imphcil vectors, indesed by ilemn names, and whose entres
are (uswally) the sum of the associated counts (although many other interpretations may be possible). A
richer model allows departures: in additional to positive updates w entries in this implicit vector, they may be
negative. This capiures more general situations in which carlier updates might be revoked, or observations
for which negative values are feasible. In either case, the assumption is that each fuple in the input stream
must be processed as it is scen, and canmol be revisited later unless i is stored explicitly by the stream
algorithm within its limited internal memory.

Randomization and Approximation. Within these models. many natural and fundamental questions can
he shown to require space linear in the impul o answer exactly. For example, to lest whether two separate
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streams are the same (e, they encode the same number of occurrences ol each ilem) requires us Lo store
space linear in the number of distinct items, which could be immense, To be able to make progress, we
ypically allow approximation: reluming an answer Lhal 15 cormect within some small fraction, ¢ of crmor;
and randomization: allowing our algorithms to make random choices and to fail with some small probability
d. Algorithms which use both randomization and approximation we refer to as (. 4} approximations.

Update time, query time and space usage. To evaluate algorithms that operate on streams, we typically
Lok al their behavior with respect o three additionad features:

— Updarte time: the time to process each stream update.
= Query fime: the Gme o use the information stored o answer the gquestion of inleresl
— Space Usage: the amount of memory wsed by the algorithm to keep information.

Typically. these three are measured in Lerms of parameters of the stream: the number of tples, woand te
number of different items yi: and the parameters « and &, To be an effective streaming algorithm these
measures, particularly the space used, should be sublinear in mand n, and ideally poly-logarithmic (i.e.
O log e log 0 Tor some constant «.

2 Streaming, sketches and summaries

In this section we outline two fundamental approaches to coping with streaming data: drawing a represen-
lative sample, and creating o compact “sketeh™ of the stream.

2.1 Random Sampling;: reservoir and minwise

Muany mining algorithms can be applicd il only we can draw a representative sample of the data From
the stream. The question is, how to ensure such a sample is drawn uniformly, given that the stream is
comtinuonsly growing? For example, if we wanl to draw a sample of [0 ilems and the stream has length
only 1000, then we want to sample roughly one in ten items. But if a further million items anive, we mist
ensure that the probability of any item heing sampled is more like one in a million. If we retain the same
100 mems, then this is very skewed o the prelis of the stream, which is unlikely o be representative.

Several solutions are possible to ensure that we continuously maintain a wniform sample from the
stream. The idea of reservoir sampling dates back to the eighties and before [15]. Tt is easiest to describe
il we wish o druw o sample of stee 1 Here, we imilialize the sample with the first ilem from the stream.
We replace the current sample with the ith item in the stream (when it is seen) by throwing some random
hits to simuolate a coin whose probability of Tanding “heads™ is | /4, and keeping the ith item as the sampled
item if we observe heads. 1Uis a simple exercise W prove that, afier seeing n items, the probability that any
of those is retained as the sample is precisely 1,1, One can generalize this technique to draw a sample of &
items, cither with replacement (by perlorming & independent repetitions ol the ahove algorithm) or without
replacement (by picking % items and replacing one with the ith with probability 1/1).

A drawhack of this approach is it does not easily generalize when we have many, distributed streams,
and wish w sample unilormly from their union. For example, consider rying o sumple [Tom o stream
formed by nerwork traffic crossing the Atlantic and Pacific oceans. It is not feasible 1o operate jointly on
both streams. Tnstead we use an alternative sampling algomithm, which we refer 1o as “min-wise sampling”™
{by analogy with an alternate technique known as min-wise hashing |3]). For each item in the stream we
pick a random label as a real number in the range 0 to |. We retain the item with the smallest random label
seen so far 1L is straightforward o observe that cach ilem has an egual chance of getting the smallest g,
due 1o the symmetry of the procedure. and therefore ir picks uniformly from the stream. Moreover, we can
run the same algorithm across distnibuted streams and merge the results o get an item picked uniformly
from the (disjoint) union of the streams, by picking the retained item with the smallest label.

Application: Estimating Entropy. The empirical entropy ol a sequence of characiers is computed by
finding the number of occurrences, f;, for each character ¢ and computing H = 7 | {I‘ log, - . This

entropy 15 often used in network monitoring applications to detect anomalics. When the number of possible
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items e is very laree, we need a different approach to approximate the entropy. We build an estimator for
entropy as follows based on sampling a position j in the stream (using the above min-wise sampling}, and
counting the number of subscquent oceurrences i the stream ol the character al position 7 as r. We can
build an unbiased estimate of IT as rlog 7 — (r — 1) log -5 This estimate is not very reliable: it can be
improved by taking the average of many repetitions using different random samples. This can be shown o
give an (=, %} cstimutor; by Laking the median of Oflog 1/4) repetitions we lorm an (7. 4) estimator.
This works well when H is large, but H can be very small, which results in a less reliable estimator. Further
modilications ol this lechnigue can be used o generale an e, 4) estimator; see [4] Tor details.

2.2  Sketches for Estimation

Many data stream problems cannot be solved with just a sample. Instead, we can make use of data structures
which, in ellect, include a contribution [rom the entire inpul. rather than just the itlems picked in the sample.
For example, consider trying to count the number of distinct objects in a stream. It is easy to see that unless
almiost all items are included in the sample, then we cannot el whether they are the same or distinet. Since o
streaming algorithm gets o see ecach item in turn, it can do better, as we shall see later. We refer o o “sketch”™
as a compact data structure which summarizes the stream for certain rypes of query. Typically it is a linear
trunslormation of the stream: we can imagine the stream as delining a vector, and the algorithm computes
the product of a matrix with this vector (to be effective, the matrix mwst have a very small representation,
e.g. being defined implicitly by hash functions). We highlight three popular sketch algorithms:

Count-Min Sketch. The count-min sketch |6] is an array ol counters ol siee % ® log % and log ¢ hash
functions. Each npdate is mapped to log ; counters, one in each row, which are incremented to reflect the
update. From this data structure, one can estimate the frequency f; of any item, with ermor at most cn with
probability at least 1 — 4, in space O( 1 log 1),

Flajolct-Martin Sketch. The Flajoler-Martin sketch [10] is a bitmap of length approximately log . Bach
item is mapped by a hash function into an entry of the bitmap: with probability i_; il maps into entry |, il' Loy
entry 2, % o entry 3 and so on. Por each item in the stream, we map (o s bit under the hash function, and
set the bit to |, The position of the least significant {0 in the bitmap indicates the logarithm of the number
ol distinet ilems seen, [7; laking repetitions with randomly chosen hash [unctions improves the accuracy.
Space 0% log ¢ ) is sufficient for an (¢, §} approximation of I,

AMS Sketches, The Alon-Matias-Szegedy sketch [2] can be described in terms of the Count-Min sketch.
MNow, when we go Lo update a counter, we multiply the value ol the update by a hash [unction g on the ilem
being updated: half the items are mapped to {1 by this hash function, and half to — 1, Taking the sum of
the sguares of all counters in each row gives a high-guality estimate for £ — Z:’H . £, the sum of the
squares of the frequency counts. This computation, or variations thereof, is al the heart of many data siream
analyses, An (¢, ) approximation for F; can be formed in space O( L log ;).

Ao commaon leature of these sketch algorithms is that they rely on hash functions on item identifiers,
which are relatively easy to implement and fast o compute. Indeed, many practical sireaming data manage-
ment systems implement such sketches, such as Sprint’s CMON system [|14] and AT&T s Gigascope [8],
both ol which operate on network data streams al gigabil speeds. Implementations ol skelches can be [ound
onthe web, including http: / /www.cs. rutgers.edu/ "muthu/massdal ~code-index . html,

3 Stream Data Mining Algorithms

Building on ideas of sampling and sketching, we can desizn algorithms for specific analysis and data mining
tasks. We discuss three popular problems: association rule mining, change detection, and clustering,
3.1 Association Rule Mining

A classic problem in data mining is Association Rule Mining [1]. Given a large collection of transactions
i, each of which is a subset of possible ilems, for example sets of flems bought from a supermarket, the
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zoal is for lind rules of the form X — 4. The support of the rule 1s the fraction of the input which contains
all members of the rule, ie. |{¢|X U {y} © #;1/[{t;]]. The confidence of the rule is the number of input
trunsactions which contains all members ol the rule divided by the number containing the conditions (lell
side), Le. [{{ X Ufg} € L/GIX S ) In general, one seeks to find all rules with support and confidence
baoth exceeding specific thresholds. There are exponentially many possible rules, and so careful strategies
are desigoed e scarch through them elliciently. Typically, the problem is reduced w one ol linding all
Sfrequent itemsets: subsets of items with high support (above some threshold ¢). From these itemsets, the
associalion rules cun be determined.

Clearly this problem is especially challenging when the input transactions are observed in a stream-
ing fashion, and limited resources are available to process them. Tndeed, even the question of finding the
frequent T-itemsels (sels ol stae 1) — o necessary precursor o solving the general problem — 15 1 chal-
lenge when the set of possible items is laree, and has attracted significant interest. Sketching techniques
as outlined ahove can be applicd, but here we describe delerministic (non-randomized) approaches. The
SpaceSaving algorithm |12] shows that the problem can be (e.()) approximated using space ({1 ). It racks
a set of k = 1 /r items and associated counts. For each item, if it has an associated counter then the counter
s ancremented; else, the item replaces the ilem with the smallest count and that count 15 ineremented. 1L
can be shown that this simple algorithm gives the desired accuracy, and can be implemented efficiently.

Criven ways 1o find frequent items. they can be extended o frequent itemsets. The method ootlined by
Manku and Motwani [ 11] attempts 1o use the avaalable space as lully as possible. For cach new transaction,
it generates all the subsers, and stores them in a compact frie-based stuerure, When the space is full, ir uses
a pruning algorithm based on freguent items algorithms o delete the least reguent jlemsels, and track the
error in the estimated counts of each item. This gives an efficient and somewhar scalable solution. although
in general there 15 no convenient non-trivial worst case bound on the space reguired for a given accuracy.
Many variations of the problem have been studied, based on finding itemsels which correspond 1o ordered
subsequences, or sequential patterns (substrings) of the input transactions.

3.2 Change Detection

As we are monitoring a stream of values, a fundamental question is “has the distribution of valves changed
recently?”. We want o know if things have changed so that we can detect anomalics — some devialion
from what is expected — and trigger an alert i6' it has. 1t can well us il there has been some problem with a
data feed which has cansed the distribution to shift. Tf we have built some data mining algorithm based on
a particulur model, a change indicated that the model may no longer be valid and we need o rebuild. But
what is a “change™? It can be the change in behaviour (frequency) of some subset of items, or a change in
other patterns. Here, we lake a definition where the underlying distribution {of frequencies) changes. We
aim 1o do this non-parametcically: that is, without explicitly lixing a model that we expeet the data to fiL

Dasu er al. propose a technique based on statistical bootstrapping o identify when a change has oc-
curred [9]. They consider the case when the inpul consists of a series of points [rom g high dimensional
space (value-based or categorical). Because we do not expect 1o see the exact same points many times,
instead we use a space-partiioning algorithm over a “reference window” to deline regions, and compute
the relative frequencies within each region: a set of empirical probabilities pii) for the reference win-
dow and q{i) for the sliding window. This is applied both to a fixed reference window, and a sliding
windiow, hoth ol siee n points. To est for change, they compute the Kollback-Leibler distanes (KL) as
Dipllg) — 3=, pli)log, p(i) /g(i).

In order to test whether this distance is significance, they use a hootstrapping idea: compute distances
based on randomly assigning points from the two windows (o two sets, and computing the distance. A high
quantile {e.2. the 99th percentile) of the distances is used as a boundary: if the measured KL distance exceeds
this lor several steps, we declare that o chunge hus occurred. The whole procedure can be implemented
efficiently in a streaming fashion by keeping appropriate data structures, and observing that as the sliding
window advances, we do not have to recompute the KI. distance from scraich, but rather can compute it
incrementally from the previows valoe with only a few operations. This wechnigue tums oul W be guibe
efficient in practice, requiring only tens of microseconds per update. Many extensions and variations are
possible, based on vanant formulations, and the wse of other chunge ests, kermel based methods ele.
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33 Clustering

The notion of a cluster is a familiar one: we often talk of “cancer clusters”, or “crime clusters”, indicating
a high local density of events. Formally, given a set of items, a good clustering places those items thal are
stmilar together in clusters, and ensures that the items in different clusters are ditferent. 1L is natural (o ry
to extend clustering to a stream, but what does it mean when the stream is so large we cannot store for each
puint which cluster it is allocated w? Typically, we seck a number ol clusters, &, which is much smaller
than the number of points, n to be clustered. After seeing the stream. the output is just the & closters, from
which the mapping of poinls (o clusters is implicit {e.g. each point s mapped to s closest cluster).

We give a simple example of clustering the stream based on optimizing the Eb-center objective: attempl-
ing to minimize the diameter (the maximum distance berween any two points in the same cluster). The
algorithm arses by guessing the dismeter of the clustering is some valoe d. The livst point is allocated a
cluster of its own. For each subsequent point in the stream, if it is far from any existing cluster. a new cluster
comtaining the new poinl s created, else i0is allocated to an existing cluster. T the guess of d was good, then
no more than k clusters will be created. Moreover, il d was reasonably close o the true diameter, then the
diameter of the stream clostering will be within a factor of 2 of the best possible cluster radivs, By trying
different pucsses of d in parallel, and discarding any thut generale more than b clusters, we can build a
i1+ e, 0} {Le. deterministic clustering algorithm |5, 7).

Other stream clustering algorithms get more complex. Some are based on the notion of “core-sels™ a
small subsel of the inpul such thal solving the problem on the subsel gives a good approsimation Lo the
solution on the full input. Yet more use a hierarchical approach: solving the problem exactly on a small
subset of data that fits in memory, then merging such solutions to get an approximate solution to the full
problem. Different technigues are needed w guarantee good results for other clusiering objective functions,
such as f-median, f-means and so on.
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Data is Massive

m Data is growing faster than our ability to store or
index it

m There are 3 Billion Telephone Calls in US each day,
30 Billion emails daily, 1 Billion SMS, IMs. ;
I

m Scientific data: NASA's observation satellites @/

generate billions of readings each per day. A

\
m |P Network Traffic: up to 1 Billion packets per hour
per router. Each ISP has many (hundreds) routers!

m Whole genome sequences for many species now
available: each megabytes to gigabytes in size ,\S

[
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Massive Data Analysis

Must analyze this massive data:

Scientific research (monitor environment, species)

m System management (spot faults, drops, failures)

m Customer research (association rules, new offers)

m For revenue protection (phone fraud, service abuse)
Else, why even measure this data?
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Example: Network Data

m Networks are sources of massive data: the metadata per
hour per router is gigabytes

m Fundamental problem of data stream analysis:
Too much information to store or transmit

m So process data as it arrives: one pass, small space: the
data stream approach.

m Approximate answers to many questions are OK, if there
are guarantees of result quality
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Streaming Data Questions

m Network managers ask questions requiring us to
analyze and mine the data:

- Find hosts with similar usage patterns (clusters)?

— Which destinations or groups use most bandwidth?

— Was there a change in traffic distribution overnight?
m Extra complexity comes from limited space and time
m Will introduce solutions for these and other problems

N\
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Other Streaming Applications

&7 "
o~
m Sensor networks y
- Monitor habitat and environmental parameters
- Track many objects, intrusions, trend analysis...

m Utility Companies
- Monitor power grid, customer usage patterns etc.
— Alerts and rapid response in case of problems

Fundamentals of Analyzing and Mining Data Streams
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Data Stream Models

We model data streams as sequences of simple tuples
Complexity arises from massive length of streams
Arrivals only streams:

— Example: (x, 3), (v, 2), (x, 2) encodes x QOO OO
the arrival of 3 copies of item X, y o0
2 copies of y, then 2 copies of x.

- Could represent eg. packets on a network; power usage

Arrivals and departures:

- Example: (x, 3), (v,2), (x, -2) encodes X 000
final state of (x, 1), (y, 2). y @@

- Can represent fluctuating quantities, or measure
differences between two distributions
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Approximation and Randomization

m Many things are hard to compute exactly over a stream
- Is the count of all items the same in two different streams?
- Requires linear space to compute exactly

m Approximation: find an answer correct within some factor
- Find an answer that is within 10% of correct result
— More generally, a (1« ¢) factor approximation

m Randomization: allow a small probability of failure
- Answer is correct, except with probability 1 in 10,000
— More generally, success probability (1-5)

m Approximation and Randomization: (g, 8)-approximations
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Structure

1. Stream summaries, sketches and samples

- Answer simple distribution agnostic questions about stream

— Describe properties of the distribution

- E.g. general shape, item frequencies, frequency moments
2. Data Mining Algorithms

- Extend existing mining problems to the stream domain

- Go beyond simple properties to deeper structure

— Build on sketch, sampling ideas

m  Only a representative sample of each topic, many other
problems, algorithms and techniques not covered
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Outline

1. Streaming summaries, sketches and samples
- Motivating examples, applications and models o

m  Application: Estimating entropy @
— Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms /
- Association Rule Mining

- Random sampling: reservoir and minwise é o o

- Change Detection
— Clustering .
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Sampling From a Data Stream
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Fundamental prob: sample m items uniformly from stream
— Useful: approximate costly computation on small sample
Challenge: don’t know how long stream is

- So when/how often to sample?

Two solutions, apply to different situations:

- Reservoir sampling (dates from 1980s7?)

- Min-wise sampling (dates from 1990s?)
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Reservoir Sampling

o0
o @

Sample first m items
Choose to sample the i’th item (i>m) with probability m/i
If sampled, randomly replace a previously sampled item

Optimization: when i gets large, compute which item will
be sampled next, skip over intervening items. [Vitter 85]
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Reservoir Sampling - Analysis

m Analyze simple case: sample size m = 1
Probability i'th item is the sample from stream length n:
— Prob. i is sampled on arrival x prob. i survives to end

xéxﬂﬁx‘ﬂ
W 2 p4a1 n

1
A

=1/n

Case for m > 1 is similar, easy to show uniform probability
Drawbacks of reservoir sampling: hard to parallelize
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Min-wise Sampling

m For each item, pick a random fraction between 0 and 1
m Store item(s) with the smallest random tag [Nath et al.'04]

® 6 & e o O

0.391 0.908 0.291 0.555 0.619 0.273

L

m Each item has same chance of least tag, so uniform
m Can run on multiple streams separately, then merge

Fundamentals of Analyzing and Mining Data Streams

Application of Sampling: Entropy

m Given a long sequence of characters
S=<a;,aya;..a,> eacha e{l...n}
Let f, = frequency of i in the sequence
Compute the empirical entropy:
H(S) = - X fym log f/m = - X p; log p;

Example:S=<a, b, a, b, ¢, a, d, a>

~ p,=1/2,p,=1/4,p,_=1/8 py=1/8
“H(S)=Y+Y%x2+1/8x3+1/8x3=7/4

Entropy promoted for anomaly detection in networks
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Sampling Based Algorithm

m Simple estimator:
- Randomly sample a position j in the stream
— Count how many times a; appears subsequently = r
— Output X =~(rlog r/m — (r-1) log(r-1)/m)

m Claim: Estimator is unbiased — E[X] = H(S)

- Proof: prob of picking j = 1/m, sum telescopes correctly
m Variance is not too large — Var[X] = O(log? m)

- Can be proven by bounding |[X| < log m

Fundamentals of Analyzing and Mining Data Streams
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Analysis of Basic Estimator

m A general technique in data streams:

- Repeat in parallel an unbiased estimator with bounded
variance, take average of estimates to improve result

— Apply Chebyshev bounds to guarantee accuracy
- Number of repetitions depends on ratio Var[X]/E?[X]
- For entropy, this means space O(log?m/H?(S))

m Problem for entropy: when H(S) is very small?
- Space needed for an accurate approx goes as 1/H?!
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Outline of Improved Algorithm

Observation: only way to get H(S) =o(1) is to have only
one character with p, close to 1
- aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaa

If we can identify this character, and make an estimator
on stream without this token, can estimate H(S)

How to identify and remove all in one pass?

Can do some clever tricks with ‘backup samples’ by
adapting the min-wise sampling technique

Full details and analysis in [Chakrabarti, C, McGregor 07]
- Total space is O(¢ log m log 1/38) for (£,5) approx

Fundamentals of Analyzing and Mining Data Streams

Outline

1.

Streaming summaries, sketches and samples

- Motivating examples, applications and models

- Random sampling: reservoir and minwise e o 0
s Application: Estimating entropy @
- Sketches: Count-Min, AMS, FM

2.

Stream Data Mining Algorithms

=

- Association Rule Mining
- Change Detection

20

- Clustering
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Sketches

m Not every problem can be solved with sampling
- Example: counting how many distinct items in the stream

- If a large fraction of items aren’t sampled, don’t know if
they are all same or all different

m Other techniques take advantage that the algorithm can
“see” all the data even if it can’t “remember” it all

m (To me) a sketch is a linear transform of the input

- Model stream as defining a vector, sketch is result of
multiplying stream vector by an (implicit) matrix

linear projection

(G

21
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Trivial Example of a Sketch

1101110101 ..

\\\\\\\ AN

1101100101 .. |

Test if two (asynchronous) binary streams are equal
d- (x,y) = 0 iff x=y, 1 otherwise
To test in small space: pick a random hash function h

Test h(x)=h(y) : small chance of false positive, no chance
of false negative.

Compute h(x), h(y) incrementally as new bits arrive
(Karp-Rabin: h(x) = x,2' mod p)
— Exercise: extend to real valued vectors in update model

(G
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Count-Min Sketch

m Simple sketch idea, can be used for as the basis of many
different stream mining tasks.

m Model input stream as a vector x of dimension U
m Creates a small summary as an array of w x d in size
m Use d hash function to map vector entries to [1..w]
m Works on arrivals only and arrivals & departures streams
< W »
Array:
CMIi.j] d
23 Fundamentals of Analyzing and Mining Data Streams :%_jt
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CM Sketch Structure
B
. / "——’—_——‘—""C i
J,*c —— 38
]
\<\‘tc g
\\TC
w = 2/g

Each entry in vector x is mapped to one bucket per row.
Merge two sketches by entry-wise summation

Estimate x[j] by taking min, CM[k,h,(j)]

- Guarantees error less than ¢||x||, in size O(1/¢ log 1/5)

- Probability of more error is less than 1-3 _
[C, Muthukrishnan '04] &

Fundamentals of Analyzing and Mining Data Streams atat
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Approximation

Approximate x’[j] = min, CM[k,h,(j)]
= Analysis: In k'th row, CM[K,h(j)] = x[]] + X
- Xi;= Z x[] | hy(i) = hy ()
- E(Xy)) =X xK]*Prh,(i)=h, ()]
< Prih,(i)=h, (k)] * Z a[i]
= ¢ ||x|[,/2 by pairwise independence of h

- PrXy ;= gl|x|[4] = PrX, ;= 2E(X, ;)] < 1/2 by Markov inequality
m So, Pr[xX[j]= x[j] + ¢ |[x||4] = Pr[V k. X j>€ [|x][4] £1/2'°9 16 = §

m Final result: with certainty x[j] < x’[j] and
with probability at least 1-5, X'[jI< x[j] + € ||x||4

25 =
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[
L, distance

m AMS sketch (for Alon-Matias-Szegedy) proposed in 1996

- Allows estimation of L, (Euclidean) distance between
streaming vectors, || x -y ||,

— Used at the heart of many streaming and non-streaming
mining applications: achieves dimensionality reduction

Here, describe AMS sketch by generalizing CM sketch.
Uses extra hash functions g;...goq 15 {1...U}> {+1,-1}
Now, given update (j,+c), set CM[k,h,(i)] += c*g,(j)

linear
projection

AMS sketch _
26 =
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L, analysis
+294()

/ [ &

i +c | Tl | |g
et =
\‘@94 )
w = 4/g2

m Estimate ||x||,2 = median, >; CM[k;,i]?
m Each row’s result is 2 g(i)>x? + Zni=ng 2 9(1) 90) X X;
m Butg(i)2=-12=+12=1 and X x2 = ||x||,2
m g(i)g(j) has 1/2 chance of +1 or —1 : expectationis O ...
27 Fundamentals of Analyzing and Mining Data Streams ;:t;‘_\?;
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L, accuracy

m Formally, one can show an (g, §) approximation

- Expectation of each estimate is exactly ||x||,? and
variance is bounded by ¢? times expectation squared.

— Using Chebyshev’s inequality, show that probability that
each estimate is within + ¢ ||x||,? is constant

- Take median of log (1/8) estimates reduces probability
of failure to 6 (using Chernoff bounds)

m Result: given sketches of size O(1/¢2 log 1/3) can
estimate ||x||,? so that result is in (1£¢)||x]||,? with
probability at least 1-6 a

- Note: same analysis used many time in data streams

m In Practice: Can be very fast, very accurate!

— Used in Sprint ‘CMON'’ tool

Fundamentals of Analyzing and Mining Data Streams
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FM Sketch
m Estimates number of distinct inputs (count distinct)
m Uses hash function mapping input items to i with prob 2-
— i.e. Pr[h(x) = 1] = %, Prh(x) = 2] = %, Pr[h(x)=3] = 1/8 ...
- Easy to construct h() from a uniform hash function by
counting trailing zeros
m Maintain FM Sketch = bitmap array of L = log U bits
— Initialize bitmap to all Os
- For each incoming value x, set FM[h(x)] = 1
6 5 4 3 2 1
x=5 — h(x) wo 0
FM BITMAP
29 Fundamentals of Analyzing and Mining Data Streams :fit
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FM Analysis

m If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]...

position ~ log(d) position ~ log(d)

around log(d)

- Let R = position of rightmost zero in FM, indicator of log(d)

- Basic estimate d = ¢2R for scaling constant ¢ ~ 1.3

- Average many copies (different hash fns) improves accuracy
m With O(1/¢2 log 1/8) copies, get (¢,8) approximation

- 10 copies gets ~ 30% error, 100 copies < 10% error

30 Fundamentals of Analyzing and Mining Data Streams
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Sketching and Sampling Summary

m Sampling and sketching ideas are at the heart of many
stream mining algorithms

- Entropy computation, association rule mining, clustering
(still to come)

m A sample is a quite general representative of the data
set; sketches tend to be specific to a particular purpose
- FM sketch for count distinct, AMS sketch for L, estimation

3 Fundamentals of Analyzing and Mining Data Streams
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Practicality

Algorithms discussed here are quite simple and very fast

— Sketches can easily process millions of updates per
second on standard hardware

— Limiting factor in practice is often 1/O related
Implemented in several practical systems:

- AT&T’s Gigascope system on live network streams
- Sprint's CMON system on live streams

- Google’s log analysis

Sample implementations available on the web
- http://www.cs.rutgers.edu/~muthu/massdal-code-index._html

— or web search for ‘massdal’

32
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Other Streaming Algorithms

Many fundamentals have been studied, not covered here:

m Different streaming data types

— Permutations, Graph Data, Geometric Data (Location
Streams)

m Different streaming processing models

- Sliding Windows, Exponential and other decay, Duplicate
sensitivity, Random order streams, Skewed streams

m Different streaming scenarios
— Distributed computations, sensor network computations

33 Fundamentals of Analyzing and Mining Data Streams
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Outline

1. Streaming summaries, sketches and samples
- Motivating examples, applications and models o

s Application: Estimating entropy @
— Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms /
- Association Rule Mining

- Change Detection

- Clustering
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Data Mining on Streams
m Pattern finding: finding common patterns or features
— Association rule mining, Clustering, Histograms,
Wavelet & Fourier Representations
m Data Quality Issues
- Change Detection, Data Cleaning, Anomaly detection,
Continuous Distributed Monitoring
m Learning and Predicting
- Building Decision Trees, Regression, Supervised Learning
m Putting it all together: Systems Issues
- Adaptive Load Shedding, Query Languages, Planning and
Execution
35 Fundamentals of Analyzing and Mining Data Streams :t:it
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Association Rule Mining

Classic example: supermarket wants to discover
correlations in buying patterns [Agrawal, Imielinski, Swami 93]

— (bogus) result: diapers - beer

Input: transactions t, = {eggs, milk, bread}, t, = {milk} ...t,

Output: rules of form {eggs, milk} > bread

- Support: proportion of input containing {eggs, milk, bread}

- Confidence: proportion containing {eggs, milk, bread}
proportion containing {eggs, milk}

Goal: find rules with support, confidence above threshold

36 Fundamentals of Analyzing and Mining Data Streams
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Frequent Iltemsets

m Association Rule Mining (ARM) algorithms first find all
frequent itemsets: subsets of items with support > ¢
- m-itemset: itemset with size m, i.e. |X| =m

m Use these frequent itemsets to generate the rules

m Start by finding all frequent 1-itemsets
- Even this is a challenge in massive data streams

37 Fundamentals of Analyzing and Mining Data Streams :%_jt
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Heavy Hitters Problem
m The ‘heavy hitters’ are the frequent 1-itemsets
m Many, many streaming algorithms proposed:
- Random sampling
— Lossy Counting [Manku, Motwani 02]
- Frequent [Misra, Gries 82, Karp et al 02, Demaine et al 02]
— Count-Min, Count Sketches [Charikar, Chen, Farach-Colton 02]
- And many more...
m 1-itemsets used to find, e.g heavy users in a network
- The basis of general frequent itemset algorithms
— A non-uniform kind of sampling
=
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Space Saving Algorithm

m “SpaceSaving” algorithm [Metwally, Agrawal, El Abaddi 05]
merges ‘Lossy Counting’ and ‘Frequent’ algorithms

- Gets best space bound, very fast in practice
m Finds all items with count > ¢n, none with count < (¢—¢)n
- Error0< ¢<1,e.g.€=1/1000
- Equivalently, estimate each frequency with error +en
m Simple data structure:
- Keep k = 1/¢ item names and counts, initially zero
- Fill counters by counting first k distinct items exactly

39 Fundamentals of Analyzing and Mining Data Streams
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SpaceSaving Algorithm

®|7
® |5 ON _
O 13

m On seeing new item:
— If it has a counter, increment counter
— If not, replace item with least count, increment count

40 Fundamentals of Analyzing and Mining Data Streams
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I
SpaceSaving Analysis

m Smallest counter value, min, is at most en
— Counters sum to n by induction
- 1/e counters, so average is ¢n: smallest cannot be bigger
m True count of an uncounted item is between 0 and min
— Proof by induction, true initially, min increases monotonically
— Hence, the count of any item stored is off by at most en
m Any item x whose true count > ¢n is stored
- By contradiction: x was evicted in past, with count < min,
- Every count is an overestimate, using above observation
- So est. count of x > en > min > min,, and would not be evicted

So: Find all items with count > ¢n, error in counts < en

(G
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Extending to Frequent Iltemsets

m Use similar “approximate counting” ideas for finding
frequent itemsets [Manku, Motwani 02]

- From each new transaction, generate all subsets
— Track potentially frequent itemsets, prune away infrequent
- Similar guarantees: error in count at most en

m Efficiency concerns:

- Buffer as many transactions as possible, generate subsets
together so can prune early

- Need compact representation of itemsets

(G
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Trie Representation of subsets

Compact representation of itemsets in lexicographic order.

(%0 (s

fao) G0 () () G

m 50 mJ 40 = 30 EE 31 EE 29
045 m 32 w42

Sets with frequency counts

Use ‘a priori’ rule: if a subset is infrequent, so are all
of its supersets — so whole subtrees can be pruned

43 Fundamentals of Analyzing and Mining Data Streams
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ARM Summary

m [Manku, Motwani 02] gives details on when and how to prune

m Final Result: can monitor and extract association rules
from frequent item sets with high accuracy

m Many extensions and variations to study:

- Space required depends a lot on input, can be many
potential frequent itemsets

- How to mine when itemsets are observed over many sites
(e.g. different routers; stores) and guarantee discovery?

— Variant definitions: frequent subsequences, sequential
patterns, maximal itemsets etc.

- Sessions later in workshop...

44 Fundamentals of Analyzing and Mining Data Streams

(G

o
=3
=




]
Outline

1. Streaming summaries, sketches and samples
- Motivating examples, applications and models o

s Application: Estimating entropy @
— Sketches: Count-Min, AMS, FM
2. Stream Data Mining Algorithms /
- Association Rule Mining
- Change Detection
- Clustering
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Change Detection

Basic question: monitor a stream of events (network, power
grid, sensors etc.), detect “changes” for:
— Anomaly detection — trigger alerts/alarms
- Data cleaning — detect errors in data feeds
- Data mining — indicate when to learn a new model
m What is “change”?
- Change in behaviour of some subset of items
- Change in patterns and rules detected
- Change in underlying distribution of frequencies

46

Fundamentals of Analyzing and Mining Data Streams

23



I
Approaches to Change Detection

General idea: compare a reference distribution to a current
window of events

m Item changes: individual items with big frequency change
- Techniques based on sketches

m Fix a distribution (eg. mixture of gaussians), fit parameters
- Not always clear which distribution to fix a priori

m Non-parametric change detection

- Few parameters to set, but must specify when to call a
change significant

47 Fundamentals of Analyzing and Mining Data Streams :%_jt
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Non-parametric Change Detection
Technique due to [Dasu et al 06]
m Measure change using Kullback-Leibler divergence (KL)
- Standard measure in statistics
- Many desirable properties, generalizes t-test and y?
m KL divergence = D(p||q) = Z, p(x) log, p(x)/q(x)
- for probability distributions p, q
- If p, q are distributions over high dimensional spaces, no
intersection between samples — need to capture density
48 g
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Space Division Approach

Use a hierarchical space division (kd-tree) to define r
regions r; of (approximately equal) weight for the
reference data

o o
. - I3
m Compute discrete probability .. . .
p over the regions ! .r,
° [ ] [ ]
.o . [ ] [ ]
m Apply same space division . i
over a window of recent o . . °
stream items to create q r, . °
[ ] r5
m Compute KL divergence D(p||q) . . .
49 Fundamentals of Analyzing and Mining Data Streams f?:t

Bootstrapping

50

How to tell if the KL divergence is significant?

Statistical bootstrapping approach: use the input data to
compute a distribution of distances

Pool reference and first sliding window data, randomly
split into two pieces, measure KL divergence

Repeat k times, find e.g. 0.99 quantile of divergences

If KL distance between reference and window > 0.99
quantile of distances for several steps, declare “change”

(G
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Streaming Computation

® o o||le e O| 6 e

Reference Sliding Window

For each update:
m Slide window, update region counts

Update KL divergence between
reference p and window q, size w

Test for significance

51 Fundamentals of Analyzing and Mining Data Streams f:t
I
Efficient Implementation
m Don’t have to recompute KL divergence from scratch
— Can write normalized KL divergence in terms of
5 (o(r) + 12w log P 1w
 (p(r) + 1(2w)) log o3 7w)
— Only two terms change per update
m Total time cost per update:
- Update two regional counts in kd-tree, O(log w)
- Update KL divergence, in time O(1)
- Compare to stored divergence cut off for significance test
— Overall, O(log w)
m Space cost: store tree and counts, O(w)
52 Fundamentals of Analyzing and Mining Data Streams f:t
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Change Detection Summary

m Proposed technique is pretty efficient in practice

— Competitive in accuracy with custom, application-aware
change detection

— Pretty fast — tens of microseconds per update

- Produces simple description of change based on regions
m Extensions and open problems:

- Other approaches — histogram or kernel based?

- Better bootstrapping: quantile approach is only first order
accurate...

53 Fundamentals of Analyzing and Mining Data Streams

I
Outline

1. Streaming summaries, sketches and samples
- Motivating examples, applications and models o

s Application: Estimating entropy @
— Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms /
- Association Rule Mining

- Change Detection

- Clustering
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Clustering Data Streams

m We often talk informally about “clusters”: ‘cancer
clusters’, ‘disease clusters’ or ‘crime clusters’

m Clustering has an intuitive appeal. We see a bunch of
items... we want to discover the clusters...

55
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Stream Clustering Large Points

%

For clustering, need to compare the points. What
happens when the points are very high dimensional?

- Eg. trying to compare whole genome sequences
- comparing yesterday’s network traffic with today’s
- clustering huge texts based on similarity
m If each point is size d, d very large , cost is very high
(at least O(d). O(d?) or worse for some metrics)
m We can do better: create a sketch for each point
m Do clustering using sketched approximate distances

56
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Stream Clustering Many Points

m What does it mean to cluster on the stream when there
are too many points to store?

m \We see a sequence of points one after the other, and we
want to output a clustering for this observed data.

m Moreover, since this clustering changes with time, for
each update we maintain some summary information,
and at any time can output a clustering.

m Data stream restriction: data is e % ® 885&)
assumed too large to store, ® ©
so we do not keep all the input, o)
or any constant fraction of it. oo

(G
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Clustering for the stream

m What should output of a stream clustering algorithm be?

m Classification of every input point?
Too large to be useful?
Might this change as more input points arrive?

— Two points which are initially put in different clusters might
end up in the same one

m An alternative is to output k cluster centers at end
— any point can be classified using these centers.

o0
@ e 0%
e o 0 Qo ® @
@
Input: @ Output:
c? ° o @
e© (=
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Approximation for k-centers

k-center: minimize diameter (max dist) of each cluster.
m Pick some point from the data as the Ffirst center.
Repeat:
- For each data point, compute distance d,, from
its closest center

- Find the data point that maximizes d;,
- Add this point to the set of centers
until k centers are picked

m |f we store the current best center for each point, then
each pass requires O(1) time to update this for the new
center, else O(k) to compare to k centers.

m So time cost is O(kn), but k passes [Gonzalez, 1985].

59
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Gonzalez Clustering k=4

ALG:

Select an arbitrary center c,

Repeat until have k centers
Select the next center c;,, to
be the one farthest from its
closest center
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Gonzalez Clustering k=4

Slide due to Nina Mishra
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Gonzalez is 2-approximation

m After picking k points to be centers, find next point that
would be chosen. Let distance from closest center = d,,

m We have k+1 points, every pair is separated by at least
dopt Any clustering into k sets must put some pair in
same set, so any k-clustering must have diameter d,

m For any two points allocated to the same center, they are
both at distance at most d,; from their closest center

m Their distance is at most 2d,;, using triangle inequality.

m Diameter of any clustering must be at least d,,;, and is at
most 2d,,, — so we have a 2 approximation.

m Lower bound: NP-hard to guarantee better than 2

(G

63 Fundamentals of Analyzing and Mining Data Streams

o
=3
=

I
Gonzalez Restated

m Suppose we knew d,; (from Gonzalez algorithm for k-
centers) at the start

m Do the following procedure:

m Select the Ffirst point as the first center

m For each point that arrives:
- Compute d;,, the distance to the closest center

- If d;, > d,, then set the new point to be a new
center

(G
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Analysis Restated

m d,is given, so we know that there are k+1 points
separated by > d,;and d, is as large as possible

m So there are <k points separated by > d,

m New algorithm outputs at most k centers: only include
a center when its distance is > d,, from all others.
If > k centers output, then > k points separated by >
dopts CONtradicting optimality of d

m Every point not chosen as a center is < d,,, from some
center and so at most 2d,,, from any point allocated to
the same center (triangle inequality)

m So: given d,; we find a clustering where every point is
at most twice this distance from its closest center

(G
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Guessing the optimal solution

m Hence, a 2-approximation — but, we aren’t given d,

- If we knew d < d,, < 2d then we could run the algorithm. If
we find more than k centers, we guessed d_, too low

- So, in parallel, guess dopt= 1,2,4,8..

- We reject everything < d,,;, so best guess is < 2d,:
our output will be < 2*2d,/d, = 4 approx
m Need 109, (da/Asmaiiest) JUESSES, g aiiest IS MINIMuM

distance between any pair of points, as dqyajiest < dopt
m O(k l0g(dax / Asmaiiest) May be high, can we reduce more?

opt

m [Charikar et al 97]: doubling alg uses only O(k) space, gives
8-approximation. Subsequent work studied other settings

(G
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Clustering Summary

m General techniques: keeping small subset (“core-set”) of
input; guessing a key value; combining subproblems

m Many more complex solutions from computational
geometry

m Variations and extensions:

- When few data points but data points are high
dimensional, use sketching techniques to represent

- Different objectives: k-median, k-means, etc.

- Better approximations, different guarantees (e.g. outputs
2k clusters, quality as good as that of best k-clustering)
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Summary

m We have looked at
Sampling from streams and applications (entropy)
Sketch summaries for more advanced computations
Association Rule Mining to find interesting patterns
Change Detection for anomaly detection and alerts
Clustering to pick out significant clusters
m Many other variations to solve the problems discussed
here, many other problems to study on data streams
- See more over the course of this workshop.

— Other tutorials and surveys: [Muthukrishnan '05]
[Garofalakis, Gehrke, Rastogi '02]
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