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Outline

1. Streaming summaries, sketches and samples
– Motivating examples, applications and models
– Random sampling: reservoir and minwise

Application: Estimating entropy
– Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms
– Association Rule Mining
– Change Detection
– Clustering
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Data is growing faster than our ability to store or 
index it

There are 3 Billion Telephone Calls in US each day, 
30 Billion emails daily, 1 Billion SMS, IMs. 

Scientific data: NASA's observation satellites 
generate billions of readings each per day.

IP Network Traffic: up to 1 Billion packets per hour 
per router.  Each ISP has many (hundreds) routers!

Whole genome sequences for many species now 
available: each megabytes to gigabytes in size

Data is Massive
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Massive Data Analysis
Must analyze this massive data:

Scientific research (monitor environment, species)
System management (spot faults, drops, failures)
Customer research (association rules, new offers) 
For revenue protection (phone fraud, service abuse)

Else, why even measure this data?
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Example: Network Data

Networks are sources of massive data: the metadata per 
hour per router is gigabytes
Fundamental problem of data stream analysis: 
Too much information to store or transmit
So process data as it arrives: one pass, small space: the 
data stream approach.
Approximate answers to many questions are OK, if there 
are guarantees of result quality
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Streaming Data Questions

Network managers ask questions requiring us to 
analyze and mine the data: 
– Find hosts with similar usage patterns (clusters)?
– Which destinations or groups use most bandwidth?
– Was there a change in traffic distribution overnight? 

Extra complexity comes from limited space and time
Will introduce solutions for these and other problems
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Other Streaming Applications

Sensor networks
– Monitor habitat and environmental parameters
– Track many objects, intrusions, trend analysis…

Utility Companies
– Monitor power grid, customer usage patterns etc.
– Alerts and rapid response in case of problems
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Data Stream Models

We model data streams as sequences of simple tuples
Complexity arises from massive length of streams
Arrivals only streams:
– Example: (x, 3), (y, 2), (x, 2) encodes

the arrival of 3 copies of item x, 
2 copies of y, then 2 copies of x.

– Could represent eg. packets on a network; power usage
Arrivals and departures:
– Example: (x, 3), (y,2), (x, -2) encodes

final state of (x, 1), (y, 2).
– Can represent fluctuating quantities, or measure 

differences between two distributions

x
y

x
y
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Approximation and Randomization

Many things are hard to compute exactly over a stream
– Is the count of all items the same in two different streams?
– Requires linear space to compute exactly

Approximation: find an answer correct within some factor
– Find an answer that is within 10% of correct result
– More generally, a (1± ε) factor approximation

Randomization: allow a small probability of failure
– Answer is correct, except with probability 1 in 10,000
– More generally, success probability (1-δ)

Approximation and Randomization: (ε, δ)-approximations
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Structure

1. Stream summaries, sketches and samples
– Answer simple distribution agnostic questions about stream
– Describe properties of the distribution
– E.g. general shape, item frequencies, frequency moments

2. Data Mining Algorithms
– Extend existing mining problems to the stream domain
– Go beyond simple properties to deeper structure
– Build on sketch, sampling ideas

Only a representative sample of each topic, many other 
problems, algorithms and techniques not covered
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Outline

1. Streaming summaries, sketches and samples
– Motivating examples, applications and models
– Random sampling: reservoir and minwise

Application: Estimating entropy
– Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms
– Association Rule Mining
– Change Detection
– Clustering
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Sampling From a Data Stream

Fundamental prob: sample m items uniformly from stream
– Useful: approximate costly computation on small sample

Challenge: don’t know how long stream is  
– So when/how often to sample?

Two solutions, apply to different situations:
– Reservoir sampling (dates from 1980s?)
– Min-wise sampling (dates from 1990s?)
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Reservoir Sampling

Sample first m items
Choose to sample the i’th item (i>m) with probability m/i
If sampled, randomly replace a previously sampled item

Optimization: when i gets large, compute which item will 
be sampled next, skip over intervening items. [Vitter 85]
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Reservoir Sampling - Analysis

Analyze simple case: sample size m = 1
Probability i’th item is the sample from stream length n:
– Prob. i is sampled on arrival × prob. i survives to end

1 i  i+1 n-2 n-1
i i+1 i+2 n-1 n

× × … ×

= 1/n

Case for m > 1 is similar, easy to show uniform probability
Drawbacks of reservoir sampling: hard to parallelize
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Min-wise Sampling

For each item, pick a random fraction between 0 and 1
Store item(s) with the smallest random tag [Nath et al.’04]

0.391 0.908 0.291 0.555 0.619 0.273

Each item has same chance of least tag, so uniform
Can run on multiple streams separately, then merge
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Application of Sampling: Entropy

Given a long sequence of characters
S = <a1, a2, a3… am> each aj ∈ {1… n}

Let fi = frequency of i in the sequence
Compute the empirical entropy:

H(S) = - ∑i fi/m log fi/m = - ∑i pi log pi

Example: S = < a, b, a, b, c, a, d, a>
– pa = 1/2, pb = 1/4, pc = 1/8, pd = 1/8
– H(S) = ½ + ¼ × 2 + 1/8 × 3 + 1/8 × 3 = 7/4

Entropy promoted for anomaly detection in networks
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Sampling Based Algorithm

Simple estimator: 
– Randomly sample a position j in the stream 
– Count how many times aj appears subsequently = r
– Output X = -(r log r/m – (r-1) log(r-1)/m)

Claim: Estimator is unbiased – E[X] = H(S)
– Proof: prob of picking j = 1/m, sum telescopes correctly

Variance is not too large – Var[X] = O(log2 m)
– Can be proven by bounding |X| ≤ log m

Fundamentals of Analyzing and Mining Data Streams18

Analysis of Basic Estimator

A general technique in data streams:
– Repeat in parallel an unbiased estimator with bounded 

variance, take average of estimates to improve result
– Apply Chebyshev bounds to guarantee accuracy
– Number of repetitions depends on ratio Var[X]/E2[X] 
– For entropy, this means space O(log2m/H2(S))

Problem for entropy: when H(S) is very small?
– Space needed for an accurate approx goes as 1/H2!
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Outline of Improved Algorithm

Observation: only way to get H(S) =o(1) is to have only 
one character with pi close to 1
– aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaa

If we can identify this character, and make an estimator 
on stream without this token, can estimate H(S)
How to identify and remove all in one pass?
Can do some clever tricks with ‘backup samples’ by 
adapting the min-wise sampling technique
Full details and analysis in [Chakrabarti, C, McGregor 07]  
– Total space is O(ε-2 log m log 1/δ) for (ε,δ) approx
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Outline

1. Streaming summaries, sketches and samples
– Motivating examples, applications and models
– Random sampling: reservoir and minwise

Application: Estimating entropy
– Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms
– Association Rule Mining
– Change Detection
– Clustering
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Sketches

Not every problem can be solved with sampling
– Example: counting how many distinct items in the stream
– If a large fraction of items aren’t sampled, don’t know if 

they are all same or all different
Other techniques take advantage that the algorithm can 
“see” all the data even if it can’t “remember” it all 
(To me) a sketch is a linear transform of the input
– Model stream as defining a vector, sketch is result of 

multiplying stream vector by an (implicit) matrix

linear projection
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Trivial Example of a Sketch

Test if two (asynchronous) binary streams are equal 
d= (x,y) = 0 iff x=y, 1 otherwise

To test in small space: pick a random hash function h
Test h(x)=h(y) : small chance of false positive, no chance 
of false negative. 
Compute h(x), h(y) incrementally as new bits arrive 
(Karp-Rabin: h(x) = xi2i mod p) 
– Exercise: extend to real valued vectors in update model

1 0 1 1 1 0 1 0 1 …

1 0 1 1 0 0 1 0 1 …
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Count-Min Sketch

Simple sketch idea, can be used for as the basis of many 
different stream mining tasks.
Model input stream as a vector x of dimension U
Creates a small summary as an array of w × d in size
Use d hash function to map vector entries to [1..w]
Works on arrivals only and arrivals & departures streams

W

d
Array: 
CM[i,j]
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CM Sketch Structure

Each entry in vector x is mapped to one bucket per row.
Merge two sketches by entry-wise summation
Estimate x[j] by taking mink CM[k,hk(j)]
– Guarantees error less than ε||x||1 in size O(1/ε log 1/δ)
– Probability of more error is less than 1-δ

+c

+c

+c

+c

h1(j)

hd(j)

j,+c

d=log 1/δ

w = 2/ε

[C, Muthukrishnan ’04]
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Approximation
Approximate x’[j] = mink CM[k,hk(j)]

Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j
– Xk,j = Σ x[i] | hk(i) = hk(j)

– E(Xk,j) = Σ x[k]*Pr[hk(i)=hk(j)] 
≤ Pr[hk(i)=hk(k)] * Σ a[i]
= ε ||x||1/2 by pairwise independence of h

– Pr[Xk,j ≥ ε||x||1] = Pr[Xk,j ≥ 2E(Xk,j)] ≤ 1/2 by Markov inequality 

So, Pr[x’[j]≥ x[j] + ε ||x||1] = Pr[∀ k. Xk,j>ε ||x||1] ≤1/2log 1/δ = δ

Final result: with certainty x[j] ≤ x’[j] and 
with probability at least 1-δ,  x’[j]< x[j] + ε ||x||1

Fundamentals of Analyzing and Mining Data Streams26

L2 distance

AMS sketch (for Alon-Matias-Szegedy) proposed in 1996
– Allows estimation of L2 (Euclidean) distance between 

streaming vectors, || x - y ||2
– Used at the heart of many streaming and non-streaming 

mining applications: achieves dimensionality reduction
Here, describe AMS sketch by generalizing CM sketch. 
Uses extra hash functions g1...glog 1/δ {1...U} {+1,-1}
Now, given update (j,+c), set CM[k,hk(i)] += c*gk(j)

linear 
projection

AMS sketch
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L2 analysis

Estimate ||x||22 = mediank ∑i CM[k,i]2

Each row’s result is ∑k g(i)2xi
2 + ∑h(i)=h(j) 2 g(i) g(j) xi xj

But g(i)2 = -12 = +12 = 1, and ∑i xi
2 = ||x||22

g(i)g(j) has 1/2 chance of  +1 or –1 : expectation is 0 …

+c*g1(j)

+c*g2(j)

+c*g3(j)

+c*g4(j)

h1(j)

hd(j)

j,+c

d=log 1/δ

w = 4/ε2

Fundamentals of Analyzing and Mining Data Streams28

L2 accuracy
Formally, one can show an (ε, δ) approximation 
– Expectation of each estimate is exactly ||x||22 and 

variance is bounded by ε2 times expectation squared. 
– Using Chebyshev’s inequality, show that probability that 

each estimate is within ± ε ||x||22 is constant
– Take median of log (1/δ) estimates reduces probability 

of failure to δ (using Chernoff bounds)
Result: given sketches of size O(1/ε2 log 1/δ) can 
estimate ||x||22 so that result is in (1±ε)||x||22 with 
probability at least 1-δ
– Note: same analysis used many time in data streams

In Practice: Can be very fast, very accurate!  
– Used in Sprint ‘CMON’ tool
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0

FM Sketch

Estimates number of distinct inputs (count distinct)
Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by 

counting trailing zeros  
Maintain FM Sketch =  bitmap array of L = log U bits 
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6      5     4     3     2      1
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FM Analysis

If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c ≈ 1.3
– Average many copies (different hash fns) improves accuracy

With O(1/ε2 log 1/δ) copies, get (ε,δ) approximation
– 10 copies gets ≈ 30% error, 100 copies < 10% error

fringe of 0/1s 
around  log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position ≈ log(d)position ≈ log(d)

1L R
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Sketching and Sampling Summary

Sampling and sketching ideas are at the heart of many 
stream mining algorithms
– Entropy computation, association rule mining, clustering 

(still to come)
A sample is a quite general representative of the data 
set; sketches tend to be specific to a particular purpose
– FM sketch for count distinct, AMS sketch for L2 estimation
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Practicality

Algorithms discussed here are quite simple and very fast
– Sketches can easily process millions of updates per 

second on standard hardware
– Limiting factor in practice is often I/O related

Implemented in several practical systems:
– AT&T’s Gigascope system on live network streams
– Sprint’s CMON system on live streams
– Google’s log analysis

Sample implementations available on the web
– http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

– or web search for ‘massdal’
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Other Streaming Algorithms

Many fundamentals have been studied, not covered here:
Different streaming data types
– Permutations, Graph Data, Geometric Data (Location 

Streams)
Different streaming processing models
– Sliding Windows, Exponential and other decay, Duplicate 

sensitivity, Random order streams, Skewed streams
Different streaming scenarios
– Distributed computations, sensor network computations

Fundamentals of Analyzing and Mining Data Streams34

Outline

1. Streaming summaries, sketches and samples
– Motivating examples, applications and models
– Random sampling: reservoir and minwise

Application: Estimating entropy
– Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms
– Association Rule Mining
– Change Detection
– Clustering
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Data Mining on Streams

Pattern finding: finding common patterns or features
– Association rule mining, Clustering, Histograms, 

Wavelet & Fourier Representations
Data Quality Issues
– Change Detection, Data Cleaning, Anomaly detection, 

Continuous Distributed Monitoring
Learning and Predicting
– Building Decision Trees, Regression, Supervised Learning

Putting it all together: Systems Issues
– Adaptive Load Shedding, Query Languages, Planning and 

Execution
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Association Rule Mining

Classic example: supermarket wants to discover 
correlations in buying patterns [Agrawal, Imielinski, Swami 93]
– (bogus) result: diapers beer

Input: transactions t1 = {eggs, milk, bread}, t2 = {milk} ...tn
Output: rules of form {eggs, milk} bread
– Support: proportion of input containing {eggs, milk, bread}
– Confidence: proportion containing {eggs, milk, bread}

proportion containing {eggs, milk}

Goal: find rules with support, confidence above threshold
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Frequent Itemsets

Association Rule Mining (ARM) algorithms first find all 
frequent itemsets: subsets of items with support > φ
– m-itemset: itemset with size m, i.e. |X| = m

Use these frequent itemsets to generate the rules
Start by finding all frequent 1-itemsets
– Even this is a challenge in massive data streams
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Heavy Hitters Problem

The ‘heavy hitters’ are the frequent 1-itemsets
Many, many streaming algorithms proposed:
– Random sampling
– Lossy Counting [Manku, Motwani 02]
– Frequent [Misra, Gries 82, Karp et al 02, Demaine et al 02]
– Count-Min, Count Sketches [Charikar, Chen, Farach-Colton 02]
– And many more...

1-itemsets used to find, e.g heavy users in a network
– The basis of general frequent itemset algorithms
– A non-uniform kind of sampling
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Space Saving Algorithm

“SpaceSaving” algorithm [Metwally, Agrawal, El Abaddi 05]
merges ‘Lossy Counting’ and ‘Frequent’ algorithms
– Gets best space bound, very fast in practice

Finds all items with count ≥ φn, none with count < (φ−ε)n
– Error 0 <  ε < 1, e.g. ε = 1/1000
– Equivalently, estimate each frequency with error ±εn 

Simple data structure:
– Keep k = 1/ε item names and counts, initially zero
– Fill counters by counting first k distinct items exactly

Fundamentals of Analyzing and Mining Data Streams40

SpaceSaving Algorithm

On seeing new item:
– If it has a counter, increment counter
– If not, replace item with least count, increment count

7

5

123
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SpaceSaving Analysis
Smallest counter value, min, is at most εn
– Counters sum to n by induction
– 1/ε counters, so average is εn: smallest cannot be bigger

True count of an uncounted item is between 0 and min
– Proof by induction, true initially, min increases monotonically
– Hence, the count of any item stored is off by at most εn

Any item x whose true count > εn is stored 
– By contradiction: x was evicted in past, with count ≤ mint

– Every count is an overestimate, using above observation
– So est. count of x > εn ≥ min ≥ mint, and would not be evicted

So: Find all items with count > εn, error in counts ≤ εn

Fundamentals of Analyzing and Mining Data Streams42

Extending to Frequent Itemsets

Use similar “approximate counting” ideas for finding 
frequent itemsets [Manku, Motwani 02]
– From each new transaction, generate all subsets
– Track potentially frequent itemsets, prune away infrequent
– Similar guarantees: error in count at most εn

Efficiency concerns: 
– Buffer as many transactions as possible, generate subsets 

together so can prune early
– Need compact representation of itemsets
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Trie Representation of subsets
Compact representation of itemsets in lexicographic order.

50

40

30

31 29 32

45

42

50              40             30             31            29
45              32           42

Sets with frequency counts 

Adapted from slides by Gurmeet Manku

Use ‘a priori’ rule: if a subset is infrequent, so are all 
of its supersets – so whole subtrees can be pruned
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ARM Summary

[Manku, Motwani 02] gives details on when and how to prune
Final Result: can monitor and extract association rules 
from frequent item sets with high accuracy
Many extensions and variations to study:
– Space required depends a lot on input, can be many 

potential frequent itemsets
– How to mine when itemsets are observed over many sites 

(e.g. different routers; stores) and guarantee discovery?
– Variant definitions: frequent subsequences, sequential 

patterns, maximal itemsets etc.
– Sessions later in workshop…
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Outline

1. Streaming summaries, sketches and samples
– Motivating examples, applications and models
– Random sampling: reservoir and minwise

Application: Estimating entropy
– Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms
– Association Rule Mining
– Change Detection
– Clustering
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Change Detection

Basic question: monitor a stream of events (network, power 
grid, sensors etc.), detect “changes” for:
– Anomaly detection – trigger alerts/alarms
– Data cleaning – detect errors in data feeds
– Data mining – indicate when to learn a new model

What is “change”?
– Change in behaviour of some subset of items
– Change in patterns and rules detected
– Change in underlying distribution of frequencies



24

Fundamentals of Analyzing and Mining Data Streams47

Approaches to Change Detection

General idea: compare a reference distribution to a current 
window of events
Item changes: individual items with big frequency change
– Techniques based on sketches

Fix a distribution (eg. mixture of gaussians), fit parameters 
– Not always clear which distribution to fix a priori

Non-parametric change detection
– Few parameters to set, but must specify when to call a 

change significant
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Non-parametric Change Detection

Technique due to [Dasu et al 06]
Measure change using Kullback-Leibler divergence (KL)
– Standard measure in statistics
– Many desirable properties, generalizes t-test and χ2

KL divergence = D(p||q) = Σx p(x) log2 p(x)/q(x)
– for probability distributions p, q

– If p, q are distributions over high dimensional spaces, no 
intersection between samples – need to capture density 
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Space Division Approach

Use a hierarchical space division (kd-tree) to define r
regions ri of (approximately equal) weight for the 
reference data

Compute discrete probability 
p over the regions

Apply same space division 
over a window of recent 
stream items to create q

Compute KL divergence D(p||q)

r1

r2

r3

r4

r5

r6
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Bootstrapping

How to tell if the KL divergence is significant?
Statistical bootstrapping approach: use the input data to 
compute a distribution of distances
Pool reference and first sliding window data, randomly 
split into two pieces, measure KL divergence
Repeat k times, find e.g. 0.99 quantile of divergences
If KL distance between reference and window > 0.99 
quantile of distances for several steps, declare “change”
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Streaming Computation

For each update:
Slide window, update region counts
Update KL divergence between 
reference p and window q, size w
Test for significance

Reference Sliding Window
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Efficient Implementation

Don’t have to recompute KL divergence from scratch
– Can write normalized KL divergence in terms of 

Σi (p(ri) + 1/(2w)) log

– Only two terms change per update
Total time cost per update: 
– Update two regional counts in kd-tree, O(log w)
– Update KL divergence, in time O(1)
– Compare to stored divergence cut off for significance test
– Overall, O(log w)

Space cost: store tree and counts, O(w)

p(ri) + 1/(2w)
q(ri) + 1/(2w)
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Change Detection Summary

Proposed technique is pretty efficient in practice
– Competitive in accuracy with custom, application-aware 

change detection
– Pretty fast – tens of microseconds per update
– Produces simple description of change based on regions

Extensions and open problems:
– Other approaches – histogram or kernel based?
– Better bootstrapping: quantile approach is only first order 

accurate…
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Outline

1. Streaming summaries, sketches and samples
– Motivating examples, applications and models
– Random sampling: reservoir and minwise

Application: Estimating entropy
– Sketches: Count-Min, AMS, FM

2. Stream Data Mining Algorithms
– Association Rule Mining
– Change Detection
– Clustering
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Clustering Data Streams
We often talk informally about “clusters”: ‘cancer 
clusters’, ‘disease clusters’ or ‘crime clusters’
Clustering has an intuitive appeal.  We see a bunch of 
items... we want to discover the clusters...

Fundamentals of Analyzing and Mining Data Streams56

Stream Clustering Large Points

For clustering, need to compare the points.  What 
happens when the points are very high dimensional? 
– Eg. trying to compare whole genome sequences
– comparing yesterday’s network traffic with today’s 
– clustering huge texts based on similarity

If each point is size d, d very large � cost is very high 
(at least O(d). O(d2) or worse for some metrics)
We can do better: create a sketch for each point
Do clustering using sketched approximate distances 
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Stream Clustering Many Points

What does it mean to cluster on the stream when there 
are too many points to store?
We see a sequence of points one after the other, and we 
want to output a clustering for this observed data. 
Moreover, since this clustering changes with time, for 
each update we maintain some summary information, 
and at any time can output a clustering. 
Data stream restriction: data is 
assumed too large to store, 
so we do not keep all the input, 
or any constant fraction of it. 
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Clustering for the stream
What should output of a stream clustering algorithm be?
Classification of every input point?  
Too large to be useful? 
Might this change as more input points arrive?
– Two points which are initially put in different clusters might 

end up in the same one
An alternative is to output k cluster centers at end 
– any point can be classified using these centers.

Input: Output:
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Approximation for k-centers

k-center: minimize diameter (max dist) of each cluster.
Pick some point from the data as the first center. 
Repeat:

– For each data point, compute distance dmin from 
its closest center

– Find the data point that maximizes dmin
– Add this point to the set of centers
Until k centers are picked

If we store the current best center for each point, then 
each pass requires O(1) time to update this for the new 
center, else O(k) to compare to k centers.
So time cost is O(kn), but k passes [Gonzalez, 1985].
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��

��

��

ALG:
Select an arbitrary center c1
Repeat until have k centers

Select the next center ci+1 to  
be the one farthest from its 
closest center

Gonzalez Clustering k=4

Slide due to Nina Mishra
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Gonzalez is 2-approximation
After picking k points to be centers, find next point that 
would be chosen. Let distance from closest center = dopt

We have k+1 points, every pair is separated by at least 
dopt. Any clustering into k sets must put some pair in 
same set, so any k-clustering must have diameter dopt

For any two points allocated to the same center, they are 
both at distance at most dopt from their closest center
Their distance is at most 2dopt, using triangle inequality.
Diameter of any clustering must be at least dopt, and is at 
most 2dopt – so we have a 2 approximation.
Lower bound: NP-hard to guarantee better than 2
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Gonzalez Restated

Suppose we knew dopt (from Gonzalez algorithm for k-
centers) at the start
Do the following procedure:
Select the first point as the first center
For each point that arrives:

– Compute dmin, the distance to the closest center
– If dmin > dopt then set the new point to be a new 
center

dopt
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Analysis Restated
dopt is given, so we know that there are k+1 points 
separated by ≥ dopt and dopt is as large as possible
So there are ≤ k points separated by > dopt

New algorithm outputs at most k centers: only include 
a center when its distance is > dopt from all others. 
If > k centers output, then > k points separated by > 
dopt, contradicting optimality of dopt. 

Every point not chosen as a center is < dopt from some 
center and so at most 2dopt from any point allocated to 
the same center (triangle inequality)
So: given dopt we find a clustering where every point is 
at most twice this distance from its closest center
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Guessing the optimal solution
Hence, a 2-approximation – but, we aren’t given dopt
– If we knew d < dopt < 2d then we could run the algorithm.  If 

we find more than k centers, we guessed dopt too low
– So, in parallel, guess dopt = 1, 2, 4, 8...
– We reject everything < dopt, so best guess is < 2dopt:

our output will be < 2*2dopt/dopt = 4 approx
Need log2 (dmax/dsmallest) guesses, dsmallest is minimum 
distance between any pair of points, as dsmallest < dopt
O(k log(dmax / dsmallest) may be high, can we reduce more?

[Charikar et al 97]: doubling alg uses only O(k) space, gives 
8-approximation. Subsequent work studied other settings
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Clustering Summary

General techniques: keeping small subset (“core-set”) of 
input; guessing a key value; combining subproblems
Many more complex solutions from computational 
geometry
Variations and extensions:
– When few data points but data points are high 

dimensional, use sketching techniques to represent
– Different objectives: k-median, k-means, etc.
– Better approximations, different guarantees (e.g. outputs 

2k clusters, quality as good as that of best k-clustering)

Fundamentals of Analyzing and Mining Data Streams68

Summary

We have looked at
– Sampling from streams and applications (entropy)
– Sketch summaries for more advanced computations
– Association Rule Mining to find interesting patterns
– Change Detection for anomaly detection and alerts
– Clustering to pick out significant clusters

Many other variations to solve the problems discussed 
here, many other problems to study on data streams
– See more over the course of this workshop.
– Other tutorials and surveys: [Muthukrishnan ’05]

[Garofalakis, Gehrke, Rastogi ’02]
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