Clustering models for high dimensional, temporal, and dissimilarity data

Maurizio Vichi
University “La Sapienza” Rome
maurizio.vichi@uniroma1.it

1. Introduction

Often data present a multiway structure, and they can be arranged into a Three-way Data Set X, i.e., a set X of $n \times K \times T$ values related to: K variables measured (observed, estimated) on n objects (individuals, products) at T occasions (assessors, times, locations, etc.). Let X_1, X_2, \ldots, X_K be K quantitative variables observed on n units (objects) at T consecutive time points (Figure 1).

The observed data can be arranged into a three-way longitudinal data set

$$Y \equiv \{y_{ijt} = (x_{ij1}, x_{ij2}, \ldots, x_{ijT}) : i \in I, t = 1, \ldots, T\}$$

where x_{ijt} is the value of the j-th variable collected on the i-th object at time t; $I = \{1, \ldots, n\}$, $J = \{1, \ldots, k\}$ and $U = \{1, \ldots, T\}$ are the set of indices pertaining to objects, variables and time points, respectively.

For each object i, $Y(i) = \{y_{ijt} : t = 1, \ldots, T\}$ describes a time trajectory of the i-th object according to the k examined variables. The trajectory $Y(i)$ is geometrically represented by $T-1$ segments connecting T points y_{ijt} of M^{k+1}. Two time trajectories in M^3