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Abstract. Wide applications of interval-valued data in various domains have
triggered the call for more powerful analytical tools. In light of this, this paper
has presented an adaptive dynamic clustering algorithm for interval-valued data,
using squared-Wasserstein distance. Experiments on both synthetic data and real
data have unveiled the merits of the proposed algorithm.

1 Introduction
The technique of clustering deals with finding a structure in a collection of objects, which

groups objects of similar kind into respective categories. As a main task of explorative statis-
tical analysis, clustering has been widely used in machine learning, pattern recognition, image
analysis and other fields of data mining.

The development of computer science in recent decades has enabled us to record immense
amount of data. Data sets with a large number of objects are commonly seen in clustering.
In some cases, however, analysts may prefer to concentrate on higher level conceptual objects
rather than massive and too-specific individual objects. For example, it makes more sense to
perform clustering on consumer groups, say male and female, or the young and the old, in or-
der to analyze their buying behaviors. Potential applications also exist in complex-structured
database or privacy-preserved census data, where conceptual observations should be employed
to prevent identification of specific individuals. Symbolic Data Analysis (Diday, 1989; Bock
and Diday, 2000; Billard and Diday, 2003; Diday and Noirhomme-Fraiture, 2008) has directed
an innovative way for solving this problem. The technique aims to generalize large-scale in-
dividuals to conceptual objects described by symbolic data, such as categorical multi-valued
data, interval-valued data, modal data, etc., and to extend classical statistical methods or de-
velop new approaches for multivariate analysis on symbolic data. As a main topic in symbolic
data analysis, clustering methods on symbolic data, especially on interval-valued data, has
aroused much attention in recent years (Diday and Brito, 1989; Bock, 2002; Chavent et al.,
2006; De Carvalho, 2007; Costa et al., 2010).
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One of the well-discussed clustering methods is dynamic clustering algorithm (DCA),
firstly proposed by Diday and Simon (1976). Recent years have witnessed an increasing num-
ber of literatures on DCA for interval-valued data based on different dissimilarity measures.
Chavent and Lechevallier (2002) have used Hausdorff distance in the algorithm. De Souza and
De Carvalho (2004) have extended this algorithm to city-block distance. An optimality crite-
rion based on squared Euclidean distance has been proposed by De Carvalho et al. (2006a).
Irpino and Verde (2008) presented a Wasserstein-based distance for DCA on interval-valued
data, and investigated its properties in the clustering algorithm.

In order to recognizes different shapes and sizes of clusters, Diday and Govaert (1977)
have proposed an adaptive dynamical clustering algorithm (ADCA), which associates a dis-
tance to each cluster. De Souza and De Carvalho (2004) and De Carvalho et al. (2006b)
respectively provided ADCA based on city-block distance and Hausdorff distance for interval-
valued data. Both non-adaptive and adaptive algorithms based on Mahalanobis distance have
been proposed by De Souza et al. (2004). De Carvalho and Lechevallier (2009b) presented a
comparison between ADCA using city-block distance and Hausdorff distance. A novel ADCA
using quadratic distances was proposed by De Carvalho and Lechevallier (2009a).

In this paper, we intend to present ADCA with squared-Wasserstain distance for clustering
interval-valued data. This algorithm could be considered as an extension of DCA based on
Wasserstain-based distances proposed by Irpino and Verde (2008). The remainder of this paper
is structured as follows: Section 2 and Section 3 will respectively introduce preliminaries on
ADCA and Wasserstain distance for interval-valued data; squared-Wasserstain-distance-based
ADCA will be proposed in Section 4; to demonstrate the merits of the proposed algorithm,
Section 5 will conduct an experiment with synthetic data sets; two cases of real life applications
will be used to further unveil the usefulness of the proposed algorithm in Section 6; and we
will conclude our work in Section 7.

2 Preliminaries

Suppose there exists a set of n objects Ω = {1, 2, · · · , n}, each of which is represented by a
p-dimensional vector x′

i = (xi1, xi2, · · · , xip). Given a predefined cluster number K, dynamic
clustering algorithm (Diday and Simon, 1976), hereinafter referred to as DCA for short, aims
to find out a partition P = {C1, C2, · · · , CK} that classifies Ω into K clusters with a given
criterion. If each cluster is represented by a prototype, denoted as y′

h = (yh1, yh2, · · · , yhp),
a good partition shall achieve that each observation in a cluster is similar to the prototype that
represents the cluster, while dissimilar to the prototype of any other clusters. Consequently,
the clustering criterion is to minimize the following function

∆(P,L) =
K∑

h=1

∑
i∈Ch

δ(xi,yh), (1)

where L = {y1,y2, · · · ,yK} represents the prototype set and δ(·, ·) is a dissimilarity measure.
As proposed by Diday and Simon (1976), DCA implements by iteratively performing a

two-stage algorithm as follows:
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1. Representative stage
Given P fixed, L that minimizes ∆(P,L) can be obtained by finding for h = 1, 2, · · · ,K,
the prototype yh that minimizes the criterion

∑
i∈Ch

δ(xi,yh).

2. Allocation stage
Given L fixed, P that minimizes ∆(P,L) can be obtained by finding for h = 1, 2, · · · ,K,
the cluster Ch = {i ∈ Ω|δ(xi,yh) ≤ δ(xi,ym), ∀m = 1, 2, · · · ,K}.

The dissimilarity measure δ(·, ·) in Equation (1) is usually expressed as

δ(xi,yh) =

p∑
j=1

d(xij , yhj), (2)

where d(·, ·) represents a dissimilarity function on R, say Euclidean distance or squared Eu-
clidean distance. Apparently, the dissimilarity function for each pair of units has been equally
weighted in Equation (2), which indicates the equivalent effectiveness of each variable for
clustering. In order to find out the potentially different importance of variables for clustering,
Diday and Govaert (1977) have proposed to associate a weighted factor, denoted as λhj , to
dissimilarity function d(xij , yhj) and cluster Ch, i.e.,

δ(xi,yh) =

p∑
j=1

λhjd(xij , yhj), (3)

subjecting to λhj > 0 and
∏p

j=1 λhj = 1.
λhj is referred to as adaptive factor, since this weight will be updated in each iteration for

each variable and for each cluster. Using Λ = (λhj)K×p to denote an adaptive factor matrix,
we could rewrite the clustering criterion as

∆(P,L,Λ) =
K∑

h=1

∑
i∈Ch

p∑
j=1

λhjd(xij , yhj). (4)

Accordingly, this adaptive dynamic clustering algorithm (ADCA) will be modified as a
three-stage process as follows:

1. Representative stage
Given both P and Λ fixed, L that minimizes ∆(P,L,Λ) can be obtained by finding for
h = 1, 2, · · · ,K, the prototype yh that minimizes

∑p
j=1 λhj

∑
i∈Ch

d(xij , yhj).

2. Adaptive stage
Given both P and L fixed, Λ that minimizes ∆(P,L,Λ) can be obtained by find-
ing for h = 1, 2, · · · ,K and j = 1, 2, · · · , p, the adaptive factor λhj that minimizes
λhj

∑
i∈Ch

d(xij , yhj).

3. Allocation stage
Given both L and Λ fixed, P that minimizes ∆(P,L,Λ) can be obtained by finding for
h = 1, 2, · · · ,K, the cluster Ch = {i ∈ Ω|

∑p
j=1

∑
i∈Ch

λhj d(xij , yhj) ≤
∑p

j=1∑
i∈Cm

λmjd(xij , ymj), ∀m = 1, 2, · · · ,K}.
Diday and Govaert (1977) have proved that ADCA will converge once the above three

stages have been properly defined.
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3 A brief introduction to Wasserstein distance
In this paper, objects described by interval-valued data are concerned. More specifically,

for i = 1, 2, · · · , n, each object is described by an interval-valued vector x′
i = (xi1, · · · , xip),

with each unit being an interval-valued data, i.e., xij = [xij , xij ](1 ≤ j ≤ p). Before deriva-
tion of ADCA on interval-valued data, we shall firstly discuss the dissimilarity function be-
tween two interval-valued data.

Given any two random variables f and g, if F and G respectively represent the distribution
functions, the Wasserstein L2 distance (Gibbs and Su, 2002) is defined as

dWass(F,G) =

(∫ 1

0

(
F−1(t)−G−1(t)

)2
dt

) 1
2

(5)

where F−1 and G−1 respectively represent the quantile function of F and G.
To achieve a general computation for this definition, Irpino and Romano (2007) have pro-

vided a formulation of Wasserstein distance, i.e.,

dWass(F,G) =
√
(µf − µg)2 + (σf − σg)2 + 2σfσg(1− ρQQ(F,G)), (6)

where µf =
∫ +∞
−∞ tdF (t) and µg =

∫ +∞
−∞ tdG(t) respectively represents the expectation of the

random variable f and g, σ2
f =

∫ +∞
−∞ t2dF (t)−µ2

f and σ2
g =

∫ +∞
−∞ t2dG(t)−µ2

g respectively
denote the variance of f and g, and

ρQQ(F,G) =

∫ 1

0

(
F−1(t)− µf

)(
G−1(t)− µg

)
dt

σfσg
=

∫ 1

0
F−1(t)G−1(t)dt− µfµg

σfσg
(7)

is a measure of shape similarity between two distributions, ranging from 0 to 1. A higher
value of ρQQ(F,G) indicates better similarity of two distributions in terms of shape. When
ρQQ(F,G) = 1, it can be inferred that both of the two distributions are of the same shape, i.e.,
same distribution function after standardization with expectation of 0 and variance of 1.

As illustrated by Irpino and Romano (2007), Equation (6) has allowed us to decompose the
dissimilarity function between two distributions into three aspects. The first part indicates how
the two distributions differ from each other in location, the second concentrates on difference
in terms of size, and the third item reports shape difference. When F and G are of the same
shape, the third part in Equation (6) will be eliminated.

According to Irpino and Verde (2008), Wasserstein distance between any two interval-
valued data, i.e., xi = [xi, xi] and xj = [xj , xj ], can be expressed as

dWass(xi, xj) =

√(xi + xi

2
−

xj + xj

2

)2
+

1

3

(xi − xi

2
−

xj − xj

2

)2
. (8)

It is easy to verify that Equation (8) holds due to the assumption that points in the concern-
ing two intervals follow uniform distribution (Bock and Diday, 2000; Billard and Diday, 2003;
Diday and Noirhomme-Fraiture, 2008), which leads to µxi =

1
2 (xi + xi), µxj = 1

2 (xj + xj),
σ2
xi

= 1
12 (xi − xi)

2, and σ2
xj

= 1
12 (xj − xj)

2.
It is interesting to notice that there is another expression of interval-valued data, i.e., xi =

(xc
i , x

r
i ) and xj = (xc

j , x
r
j), where xc

i and xc
j respectively represent midpoints of xi and xj ,
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while xr
i and xr

j correspond to radius, i.e., xr
i = 1

2 (xi − xi) and xr
j = 1

2 (xj − xj). Therefore,
we could rewrite Equation (8) as follows:

dWass(xi, xj) =

√
(xc

i − xc
j)

2 +
1

3
(xr

i − xr
j)

2. (9)

It is easy to prove that Wasserstein distance is a metric. For any three interval-valued data
xi, xj and xk, Wasserstein distance dWass(·, ·) satisfies the following three properties, i.e.,

– Non-negativity, i.e., dWass(xi, xj) ≥ 0, and dWass(xi, xj) = 0 if and only if xi = xj .
– Symmetry, i.e., dWass(xi, xj) = dWass(xj , xi).
– Triangle inequality, i.e., dWass(xi, xj) + dWass(xj , xk) ≥ dWass(xi, xk).
Notably, Wasserstein distance could also deal with single-valued numeric data. For in-

stance, given xi being a single-valued numeric data, Equation (9) proceeds by setting xr
i = 0.

Furthermore, the equation will reduce to Euclidean distance if two single-valued numeric data
are involved in computation.

4 Adaptive Dynamic Clustering Algorithm using Squared-
Wasserstein Distance

Equipped with Wasserstein distance, we are now able to accomplish the derivation of
ADCA on interval-valued data.

We still assume that there is a set of objects as Ω = {1, 2, · · · , n}, however, each object
in this paper is described by p interval-valued variables, i.e., x′

i = (xi1, xi2, · · · , xip), with
each unit being an interval-valued data xij = [xij , xij ] (1 ≤ i ≤ n, 1 ≤ j ≤ p). Let us
denote the prototype of the hth (1 ≤ h ≤ K) cluster Ch as y′

h = (yh1, yh2, · · · , yhp), with
yhj = [y

hj
, yhj ] (1 ≤ j ≤ p). Using squared-Wasserstein distance, the clustering criterion can

be expressed as

∆(P,L,Λ) =

K∑
h=1

∑
i∈Ch

p∑
j=1

λhjd
2
Wass(xij , yhj), (10)

subjecting to λhj > 0 and
∏p

j=1 λhj = 1. If we define Ψhj =
∑

i∈Ch
d2Wass(xij , yhj), the

criterion in Equation (10) can also be given by

∆(P,L,Λ) =
K∑

h=1

p∑
j=1

λhjΨhj . (11)

In order to achieve the minimization of the criterion in Equation (11), as mentioned in
previous section, a three-stage algorithm shall be employed, which updates the prototype set
L in Representative stage, the adaptive factor set Λ in Adaptive stage, and the partition P in
Location stage for each iteration.

(i) Definition of the best prototypes
In the first step of Representative stage, we aim to find out the best prototype ŷ′

h =
([ŷ

h1
, ŷh1], · · · , [ŷhp, ŷhp]) that minimizes Ψhj , when the adaptive factor set Λ and the parti-

tion P are fixed. For j = 1, 2, · · · , p, using distance definition in Equation (9), we take partial
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derivatives of Ψhj with respect to ychj and yrhj respectively and let them be zero, i.e.,

∂Ψhj

∂ychj
=

∂

∂ychj

(∑
i∈Ch

(xc
ij − ychj)

2 +
1

3
(xr

ij − yrhj)
2

)
= 0, (12)

∂Ψhj

∂yrhj
=

∂

∂yrhj

(∑
i∈Ch

(xc
ij − ychj)

2 +
1

3
(xr

ij − yrhj)
2

)
= 0. (13)

The solutions to Equation (12) and Equation (13) are

ŷchj =
1

|Ch|
∑
i∈Ch

xc
ij , ŷrhj =

1

|Ch|
∑
i∈Ch

xr
ij , (14)

where |Ch| represents the object number of Ch.
Accordingly, we could have

ŷ
hj

= ŷchj − ŷrhj =
1

|Ch|
∑
i∈Ch

xij , ŷhj = ŷchj + ŷrhj =
1

|Ch|
∑
i∈Ch

xij . (15)

And the best prototype is ŷ′
h = ([ŷ

h1
, ŷh1], · · · , [ŷhp, ŷhp]).

(ii)Definition of the best adaptive factors
Once the best prototypes have been determined, the next problem is to look for the best

adaptive factors λ̂hj for j = 1, 2, · · · , p that achieves minimization of
∑p

j=1 λhjΨhj . Consid-
ering that λhj is subject to the constraint

∏p
j=1 λhj = 1, we can deduce the solutions by the

Lagrange multiplier method (Arfken, 1985), i.e.,

∂

∂λhj

 p∑
j=1

λhjΨhj − µ

 p∏
j=1

λhj − 1

 = 0, for j = 1, 2, · · · , p, (16)

where µ ̸= 0 is an unknown Lagrange multiplier. From Equation (16) we can easily obtain the
following result, i.e.,

λ̂hj =
µ

Ψhj
. (17)

Due to
∏p

j=1 λhj = 1, the Lagrange multiplier can be expressed as

µ =

 p∏
j=1

Ψhj

 1
p

. (18)

Thus, we finally derive the solutions λ̂hj (j = 1, 2, · · · , p) as follows:

λ̂hj =
µ

Ψhj
=

{∏p
k=1

[∑
i∈Ch

(xc
ik − ŷchk)

2 + 1
3 (x

r
ik − ŷrhk)

2
]} 1

p∑
i∈Ch

(xc
ij − ŷchj)

2 + 1
3 (x

r
ij − ŷrhj)

2
. (19)
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A close look at Equation (19) will help us understand the meaning of adaptive factors. For
the hth cluster, apparently, the denominator Ψhj varies with variables while the numerator is
fixed. Consequently, λ̂hj tends to get lower value when Ψhj is larger, while on the contrary,
the value of λ̂hj will be higher. Since Ψhj indicates within-cluster sum of dissimilarity in
the jth variable, we may infer that adaptive factors give higher weight to variables, on which
the concerning cluster appears rather compact, while assigns lower value of weight to variables
that makes the cluster loose. Indeed, this contributes to recognizing the importance of variables
in clustering.

Noticeable, both Equation (14) and Equation (19) allow mixture of data type, i.e., single
real-valued variables together with interval-valued variables in the concerning data set. This is
because single real-valued data can be rewritten as a special form of interval-valued data, i.e.,
the lower bound equals to the upper bound.

Equipped with the above definitions, in the following we summarize ADCA on interval-
valued data with squared-Wasserstein distance.

1. Initialization
Randomly select K prototypes and a partition {C1, C2, · · · , CK} of Ω.

2. Allocation stage
test← 0
for i = 1 to n do

define the winning cluster Ck∗ such that
k∗ = argminh=1,...,K Ψh(xi,yh)
if i ∈ Ck and k ̸= k∗ then
test← 1
Ck∗ ← Ck∗ ∪ {i}
Ck ← Ck \ {i}

end if
end for

3. Representative stage
For h = 1, 2, · · · ,K compute the prototype ŷh = ([ŷ

h1
, ŷh1], [ŷh2, ŷh2], · · · , [ŷhp, ŷhp])

′.

4. Adaptive stage
For j = 1, 2, · · · , p and h = 1, 2, · · · ,K, compute λ̂hj .

5. Stopping criterion
If test = 0 then STOP, otherwise go to step 2.

The convergence of this algorithm is achieved due to the decrease of the partitioning crite-
rion in Equation (10) at each iteration, which is on account of the optimization of the adequacy
criterion at each Representative stage and each Adaptive stage.

5 Experiment on Synthetic Data Sets
In order to demonstrate the merits of the proposed algorithm, experiment based on Monte

Carlo simulation will be carried out in this section.
The comparison is expected to validate (1) the merits of squared-Wasserstein distance in

ADCA, compared with L1 distance, L2 distance and Hausdorff distance; (2) the superiority



ADCA for Interval-valued Data based on Squared-Wasserstein Distance

of ADCA to DCA when using squared-Wasserstein distance. Consequently, ADCA consid-
ering four different distances, i.e., L1 distance, L2 distance, Hausdorff distance and squared-
Wasserstein distance as well as DCA based on squared-Wasserstein distance will be performed
on synthetic data sets with clusters of different shapes and sizes. We will use an external indi-
cator to measure the similarity between different partitions obtained from different clustering
algorithms and a priori partition labeled to the synthetic data.

5.1 Data

We will consider synthetic data sets with the same configuration proposed by De Souza
and De Carvalho (2004). Each data set, with 350 observations described by two interval-
valued variables, includes three clusters of different sizes and shapes: two clusters with an
ellipsoidal shape and size of 150 each and one cluster with a spherical shape and size of 150.
And this 3-cluster partition will work as a priori partition.

Since an interval-valued data can be constructed by the combination of center and radius,
this paper will generate interval-valued observations as follows:

(
[xc

i1 − xr
i1, x

c
i1 + xr

i1], [x
c
i2 − xr

i2, x
c
i2 + xr

i2]
)
, (20)

where xc
ij and xr

ij (i = 1, 2, · · · , 350, j = 1, 2) represent the midpoint and radius respectively.
The parameter vector (xc

i1, x
c
i2) obeys a bi-variate normal distribution, say N2(µ,Σ), where

µ =

(
µ1

µ2

)
and Σ =

(
σ2
1 0
0 σ2

2

)
. (21)

As shown in Table 1, two types of data set will be constructed according to different configu-
rations of µ. The predefined clusters are either well-separated or overlapping in the two data
sets, since the parameter of xc

ij decides positions of interval-valued observations.

Data sets Clusters µ1 µ2 σ2
1 σ2

2

well-separated
C1 28 22 100 9
C2 60 30 9 144
C3 45 38 9 9

overlapping
C1 45 22 100 9
C2 60 30 9 144
C3 52 38 9 9

TAB. 1 – Two kinds of synthetic data sets.

With different values of xr
ij , we will obtain interval-valued observations in different shapes

and sizes. There are five configurations of xr
ij , namely, [1, 4], [1, 8], [1, 12], [1, 16] and [1, 20],

involved in our experiments. For each configuration, we will randomly select 350 sample
points of xr

ij that uniformly distributed within each of the five given intervals.
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5.2 Indicator
The indicator for evaluating effectiveness of different clustering algorithms is the Corrected

Rand (CR) index. Given two partitions of the same data set, U = {u1, u2, · · · , uR} and
V = {v1, v2, · · · , vC}, CR is defined as

CR =

∑R
i=1

∑C
j=1

(
nij

2

)
−
(
n
2

)−1∑R
i=1

(
ni·
2

)∑C
j=1

(
n·j
2

)
1
2

[∑R
i=1

(
ni·
2

)
+
∑C

j=1

(
n·j
2

)]
−
(
n
2

)−1∑R
i=1

(
ni·
2

)∑C
j=1

(
n·j
2

) , (22)

where
(
n
2

)
= n(n−1)

2 and nij represents the number of objects that are in clusters of both ui

and vj , ni· and n·j count the number of object respectively in cluster ui and vj , and n is the
total number of objects in the data set.

Ranging within the interval of [−1, 1], CR helps to show how well the partition obtained
by the clustering algorithm matches the priori partition. The higher the absolute value of the
indicator, the better the obtained partition agrees to the priori partition.

5.3 Procedures
The experiment will be conducted in the framework of Monte Carlo simulations as follows:

1. For each type of data set (well-separated or overlapping) and each configuration of xr
ij ,

the experiment will be repeated 50 times.

2. In each time of experiment, randomly select 350 pairs of (xc
i1, x

c
i2) and (xr

i1, x
r
i2) from

the corresponding distributions as described above to build 350 2-dimensional interval-
valued observations.

3. Adopt ADCA based on L1 distance, L2 distance, Hausdorff distance and squared Wasser-
stein distance and DCA using squared Wasserstein distance to obtain 3-cluster partitions
respectively. For each algorithm, the best partition with the lowest value of the clustering
criterion will be selected among 50 replications.

4. In each time of experiment, record CR index for each of the five algorithms. Calculate
the average value of CR index for each algorithm in 50 times.

5. For each type of data set and each configuration of xr
ij , perform t-test with a 5% level of

significance for 50 paired samples by algorithms A and B under the following hypothe-
sis (null and alternative):
H0: CR(A)− CR(B) ≤ 0 H1: CR(A)− CR(B) > 0,
where algorithm A represents ADCA based on squared-Wasserstein distance, and algo-
rithm B can be replaced by ADCA using L1 distance, L2 distance, Hausdorff distance,
or DCA using squared-Wasserstein distance. Record the t-statistics values for each type
of data set and each configuration.

5.4 Results
Comparative results of simulation experiments have been listed in Table 2 and Table 3.
Table 2 displays the result of averaged CR index value of each algorithm in 50 times of

experiment for each data set and for each configuration. Apparently, most cases demonstrate
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Data sets Configurations L1

(ADCA)
L2

(ADCA)
Hausd.

(ADCA)
sq-Wass.
(ADCA)

sq-Wass.
(DCA)

well-separated

[1, 4] 0.9214 0.9689 0.9150 0.9684 0.6098
[1, 8] 0.9277 0.9493 0.8690 0.9567 0.6063
[1, 12] 0.8647 0.8717 0.8589 0.9406 0.6045
[1, 16] 0.7163 0.7820 0.6771 0.9146 0.6035
[1, 20] 0.6606 0.7237 0.5892 0.8932 0.5970

overlapping

[1, 4] 0.3374 0.3407 0.2847 0.4588 0.3488
[1, 8] 0.4861 0.5012 0.4680 0.5509 0.3495
[1, 12] 0.4206 0.4611 0.3884 0.5225 0.3446
[1, 16] 0.3918 0.4191 0.3419 0.5021 0.3524
[1, 20] 0.3375 0.3407 0.2847 0.4588 0.3488

TAB. 2 – Average values of CR index for ADCA based on L1 distance, L2 distance, Hausdorff
distance and squared-Wasserstein distance and for DCA using squared-Wasserstein distance.

the merits of using squared-Wasserstein distance in ADCA. Concerning the well-separated data
sets, squared-Wasserstein distance is superior to L1 distance and Hausdorff distance regardless
of configurations of xr

ij . Compared with L2 distance, squared-Wasserstein distance shows
its advantage except for the configuration of [1, 4]. For the overlapping data sets, squared-
Wasserstein distance also outstands from the other three distances with higher averaged CR
values.

Concerning the comparison of ADCA and DCA when using squared-Wasserstein distance,
as expected, the averaged CR values of ADCA based on squared-Wasserstein distance are
much higher than average values of CR index for DCA using squared-Wasserstein distance,
regardless of configurations and data set types. We could therefore conclude that ADCA out-
performs DCA when using squared-Wasserstein distance.

To further support the above conclusions, we perform paired sample t-test for CR in-
dex values between squared-Wasserstein-distance-based ADCA and L1-distance-based ADCA
(or L2-distance-based ADCA, or Hausdorff-distance-based ADCA, or squared-Wasserstein-
distance-based DCA). The results have been displayed in Table 3.

Data sets Configurations L1

(ADCA)
L2

(ADCA)
Hausd.
(ADCA)

Wass.
(DCA)

well-separated

[1, 4] 2.368∗ −1.418 2.933∗ 43.076∗

[1, 8] 2.063∗ 1.783 4.186∗ 27.707∗

[1, 12] 2.969∗ 2.914∗ 2.948∗ 17.841∗

[1, 16] 8.862∗ 6.328∗ 8.297∗ 19.705∗

[1, 20] 11.307∗ 7.206∗ 11.543∗ 17.879∗

overlapping

[1, 4] 2.981∗ 1.286 7.003∗ 14.500∗

[1, 8] 4.605∗ 3.393∗ 6.439∗ 13.571∗

[1, 12] 6.637∗ 4.393∗ 7.026∗ 10.958∗

[1, 16] 10.983∗ 7.713∗ 10.895∗ 16.229∗

[1, 20] 11.964∗ 10.139∗ 13.893∗ 12.318∗

TAB. 3 – T -statistics values in paired sample t-test (values with a superscript of ∗ indicates
rejection of H0).

As expected, the result shows the superiority of ADCA to DCA when using squared-
Wasserstein distance. The null hypothesis can be rejected regardless of data configurations.
This is mainly accounted by the fact that DCA treats all clusters equally, yet the synthetic data
set is constructed with different cluster types.
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Focusing on ADCA, squared-Wasserstein distance outperforms L1 distance and Hausdorff
distance in 100% of the configurations for both datasets, which is consistent of results dis-
played in Table 2. In comparison with L2 distance, however, the percentages of rejecting
hypothesis fall to 60% and 80% respectively for the well-separated data set and the overlap-
ping data set. This suggests that ADCA based on squared-Wasserstein distance performs better
in recognizing intervals with larger radius. The superiority of squared-Wasserstein distance to
other distances is probably due to the fact that it employs all possible points in the concerning
intervals, yet L1 distance (L2 distance, or Hausdorff distance) uses only boundary informa-
tion of intervals. The emphasize on complete information within intervals contributes to better
recognization of intervals in different size and shape.

Indeed, the merits of this proposed algorithm have been well supported by comparative
results in this section. To sum up, in most cases, squared-Wasserstein-distance-based ADCA
has achieved decent performance in discovering underlying structure and recognizing clusters
of different shapes and sizes in a data set.

6 Real data
In this section, two cases from real world will be considered to further validate the use-

fulness of the proposed algorithm. In the first case, comparison on values of CR index by
different algorithms will be conducted again, since a prior partition has been given. Tempera-
ture changing rules in 60 stations of China is concerned in the second case.

6.1 Car data set
We firstly consider the car data set (De Carvalho et al., 2006a), concerning 33 cars featured

by 8 interval-valued variables, i.e., Price, Engine Capacity, Top Speed, Acceleration, Step,
Length, Width and Height. The priori partition, defined by a nominal variable Car Category, is
shown as follows:

– Utility
1-Alfa 145/U 5-Audi A3/U 12-Punto/U 13-Fiesta/U 17-Lancia Y/U
24-Nissan Micra/U 25-Corsa/U 28-Twingo/U 29-Rover 25/U 31-Skoda Fabia/U

– Sedan
2-Alfa 156/B 6-Audi A6/B 8-BMW serie 3/B 14-Focus/B
21-Mercedes Classe C/B 26-Vectra/B 30-Rover 75/B 32 Skoda Octavia/B

– Sports
4-Aston Martin/S 11-Ferrari /S 15-Honda NSK/S 16-Lamborghini/S
19-Maserati GT/S 20-Mercedes SL/S 27-Porsche/S

– Luxury
3-Alfa 166/L 7-Audi A8/L 9-BMW serie 5/L 10-BMW serie 7/L
18-Lancia K/L 22-Mercedes Classe E/L 23-Mercedes Classe S/L 33-Passat/L

ADCA based on different distances, i.e., L1 distance, L2 distance, Hausdorff distance,
squared-Wasserstein distance, and DCA using squared-Wasserstein distance, will be applied
to this data set. Each algorithm will run 100 times and the best result with the lowest value of
clustering criterion will be selected. CR index will be calculated to find out which algorithm
achieves a partition best matching the prior partition (see Table 4).
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 CR index

L1

(ADCA)

4/S 11/S 15/S
16/S 19/S 20/S
27/S

6/B 7/L 9/L
10/L 22/L 23/L

12/U 13/U 17/U
24/U 25/U 28/U
29/U 31/U

1/U 2/B 3/L
5/U 8/B 14/B
18/L 21/B 26/B
30/B 32/B 33/L

0.5623

L2

(ADCA)

4/S 11/S 15/S
16/S 19/S 20/S
27/S

6/B 7/L 9/L
10/L 22/L 23/L

12/U 13/U 17/U
24/U 25/U 28/U
29/U 31/U

1/U 2/B 3/L
5/U 8/B 14/B
18/L 21/B 26/B
30/B 32/B 33/L

0.5623

Hausd.
(ADCA)

4/S 11/S 15/S
16/S 19/S 20/S
27/S

6/B 7/L 9/L
10/L 22/L 23/L

12/U 13/U 17/U
24/U 25/U 28/U
29/U 31/U

1/U 2/B 3/L
5/U 8/B 14/B
18/L 21/B 26/B
30/B 32/B 33/L

0.5623

sq-Wass.
(DCA) 4/S 11/S 16/S

7/L 9/L 10/L
15/S 19/S 20/S
22/L 23/L 27/S

1/U 12/U 13/U
14/B 17/U 24/U
25/U 26/B 28/U
29/U 31/U 32/B

2/B 3/L 5/U
6/B 8/B 18/L
21/B 30/B 33/L

0.3884

sq-Wass.
(ADCA)

4/S 11/S 15/S
16/S 19/S 20/S
27/S

6/B 7/L 9/L
10/L 22/L 23/L

12/U 13/U 17/U
24/U 25/U 28/U
29/U 31/U

1/U 2/B 3/L
5/U 8/B 14/B
18/L 21/B 26/B
30/B 32/B 33/L

0.5623

TAB. 4 – Clustering results for the Car data set.

Apparently, ADCA has obtained the same partition regardless of distance. But the result is
quite different from the partition by DCA based on squared-Wasserstein distance. As shown
in the column on the right side, ADCA gains a higher value of CR index (0.5623) than DCA
(0.3884). Consequently, the superiority of ADCA using squared-Wasserstein distance has been
again demonstrated in this case, compared with squared-Wasserstein-distance-based DCA.

6.2 China temperature data set

The second application concerns with monthly temperature of 60 meteorological stations
of China in 1988 (Tao et al., 1997). Table 5 has displayed an outline of the data set. Rather than
single-valued data, interval-valued data is used to record temperature in each month for each
station, with lower/upper bounds corresponding to minimum/maximum values respectively. In
such a way, analysts can learn not only average value but also variation of the temperature.

Stations Jan. Feb. . . . Dec.
AnQing [1.8, 7.1] [2.1, 7.2] . . . [4.3, 11.8]
BaoDing [−7.1, 1.7] [−5.3, 4.8] . . . [−3.9, 5.2]
BeiJing [−7.2, 2.1] [−5.9, 3.8] . . . [−4.4, 4.7]
BoKeTu [−23.4,−15.5] [−24,−14] . . . [−21.1,−13.1]
ChangChun [−16.9,−6.7] [−17.6,−6.8] . . . [−15.9,−7.2]
. . . . . . . . . . . . . . .
ZhiJiang [2.7, 8.4] [2.7, 8.7] . . . [5.1, 13.3]

TAB. 5 – Outline of China temperature data set.

In this case, we will perform ADCA based on squared-Wasserstein distance to partition
the 60 stations according to their monthly temperatures. We fix the cluster number to 5, since
there are five major climate types in China, i.e., namely Severe cold, Cold, Hot summer and
cold winter, Mild, and Hot summer and warm winter (Domrös and Peng, 1988). And we will
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FIG. 1 – Clustering result of China temperature data set (K = 5)

examine the agreement between this prior partition and the partition obtained by ADCA based
on squared-Wasserstein distance.

Figure 1 has shown the clustering result, along with geographic location of the 60 stations
and the five climate zones in a map of China. Remarkably, stations of each cluster locate in
one climate zone (Cluster 1 and 5) or neighboring climate zones (Cluster 2, 3 and 4). That
is, the obtained partition provides a good match for the climate zones. In fact, this could be
mainly accounted by latitude of each station. For instance, stations of Cluster 1 lie in south
China, while stations in the northeast are grouped into Cluster 5. Nevertheless, there still exist
one exception. In the third cluster, it is station of Qingjiang that mix up in the second cluster.
Due to locating in river basin, this station experiences lower temperature than stations within
the surrounding area. Consequently, the topography has contributed to allocating Qingjiang
station to Cluster 3 (Cold zone), rather than Cluster 2 (Hot summer and cold winter zone).

For further interpretation, the corresponding adaptive factors have been listed in Table 6.
For each cluster, we could make a comparison on adaptive factor values between different
variables, which unveils the importance of the corresponding variable on clustering results.
Take Cluster 1 as an example. The adaptive factors from June to October are greater than 1,
while others less than 1, which indicates that the five months from summer to autumn have
performed rather vital role on allocating this cluster. In fact, Cluster 2, 4 and 5 also share
similar characteristics of high adaptive factor values from June to October, and Cluster 2 and
5 even extend such feature to spring. However, it is quite different that Cluster 3 shows lower
values of adaptive factors in July and August, which may declare that stations in this cluster
differ from each other in temperature during summer time.

To demonstrate the merits of ADCA based on squared-Wasserstein distance, we could
further evaluate the clustering results by different methods in terms of CR index (see Table 7),
given that the aforementioned five climate zones as a prior classification. As expected, ADCA
based on squared-Wasserstein distance outperforms most of other methods, i.e., ADCA based
on L1 distance and Hausdorff distance, and squared-Wasserstein-distance-based DCA. Yet,
ADCA using L1 distance also performs equally well in this case.
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Variables Vectors of adaptive facotrs
λ1 λ2 λ3 λ4 λ5

Jan. 0.609 0.704 0.785 0.670 0.598
Feb. 0.498 0.564 0.628 0.745 0.663
Mar. 0.719 0.998 0.782 1.083 0.619
Apr. 0.912 1.218 1.665 0.790 1.532
May 0.703 1.255 1.491 0.950 1.277
Jun. 1.736 1.212 1.139 0.701 1.428
Jul. 1.810 1.061 0.547 1.011 1.390

Aug. 2.003 1.056 0.697 2.229 1.121
Sept. 1.213 1.115 1.053 1.601 1.172
Oct. 1.379 1.205 1.497 1.221 1.180
Nov. 0.947 1.120 1.440 0.894 0.914
Dec. 0.715 0.808 1.060 0.894 0.741

TAB. 6 – Vectors of adaptive factors for China temperature data set.

Methods
L1

(ADCA)

L2

(ADCA)

Hausd.

(ADCA)

sq-Wass.

(DCA)

sq-Wass.

(ADCA)

CR index 0.2491 0.4054 0.2491 0.2491 0.4054

TAB. 7 – Comparison in CR index for China temperature data set.

7 Conclusions
Based on squared-Wasserstein distance, this paper has contributed to presenting an adaptive

dynamic clustering algorithm (ADCA) on interval-valued data. Comparative analysis on both
synthetic data sets and real-life cases have revealed that (1) DCA based on squared-Wasserstein
distance has been improved in performance by using adaptive factors; (2) squared-Wasserstein
distance shows superiority to L1 distance, L2 distance and Hausdorff distance in ADCA. Con-
sequently, the proposed algorithm could be considered as a good choice for clustering interval-
valued data.
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