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Abstract. Methods of analysis of a dataset where the individuals are partitioned
into groups are discussed. These methods encompass known strategies of analy-
sis and a new method called dual generalized Procrustes analysis. The emphasis
is put on how the methods used in the context of multi-block data analysis can
be adapted to the present context of multi-group setting. The similarities and
the differences between the various approaches of analysis are highlighted and
illustrated on the basis of three datasets.

1 Introduction

Very often, it occurs that the same J variables are measured on a set of individuals parti-
tioned in M groups. We shall refer to this setting as multi-group datasets. In order to inves-
tigate the structure of the data in the groups, principal components analysis (PCA) (Jolliffe,
2002), which is an extensively used tool for the reduction of the dimensionality in multivariate
analysis, can be performed on each group separately. Clearly, this strategy of analysis yields
a large number of parameters which is likely to lead to an instability problem of the solution
because of a lack of sufficient data to accurately estimate all the parameters. Moreover, this
strategy of analysis entails a difficulty in interpreting the outcomes and in comparing the re-
sults across the groups. It is also possible to perform PCA on the concatenated dataset where
the rows refer to the individuals from all the groups. However, in this case the total variance
recovered by the principal components mix up both the between and within-group variances.

In order to counteract these problems, several procedures have been proposed using more
parsimonious models than separate PCA on the M groups. For instance, common principal
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components analysis (Flury, 1984) is defined as a generalization of PCA to the case of multi-
group setting. This consists in considering the variance-covariance matrices associated to the
groups and seeking common orthogonal vectors of loadings associated with the components
in the groups. However, the determination of the common vectors of loadings which is based
on maximum likelihood estimation leads to a complex algorithm which is time consuming and
whose convergence is not granted.

The aim of this paper is to set up a general framework for the determination of the common
vectors of loadings. For this purpose, several strategies are proposed: (i) common principal
components analysis, (ii) determination of a common variance-covariance matrix (multi-group
principal components analysis, dual multiple factor analysis, dual STATIS), (iii) dual general-
ized Procrustes analysis, (iv) stepwise determination of common vectors of loadings (between-
groups comparison, multi-group PCA retrieved). These strategies typify the main multi-group
methods available in the literature. They are compared on the basis of three real datasets.

2 Methods

2.1 Data and notations
Matrices are denoted by upper case bold letters (e.g., A) and column vectors are denoted

by lower case bold letters (e.g., a). As stated above, the dataset X consists in the measurements
of J variables on N individuals. Moreover, this dataset is a priori divided into M groups
(X1, . . . , XM ). Each group refers to Nm individuals (

∑M
m=1Nm = N). We assume that each

group Xm is column centered, therefore the variance-covariance matrix of group m is given
by Vm = 1

Nm
XTmXm. Where the superscript T denotes the matrix transpose operation. The

vector a(h) is the common vector of loadings associated with dimension h = (1, . . . ,H) where
H =rank(X). The matrix A is the matrix of common loadings given by A = [a(1), . . . , a(H)].
As we will see, it may be useful to exhibit a group vector of loadings a(h)m associated with
group m and dimension h. The group vector of loadings a(h)m is assumed to lie in the space
spanned by the rows of matrix Xm. The group component t(h)m = Xma(h) is the principal
component in group m associated with the common vector of loadings a(h) (h = 1, . . . ,H).
The graphical display in Figure 1 depicts all these elements.

2.2 Common principal components analysis
In order to set up more clearly the aim of the study and introduce the notations that will

be used throughout this paper, we find it useful to elaborate on Flury’s common principal
components analysis, called CPCA (Flury, 1984). Flury’s CPCA model is expressed in terms
of the variance-covariance matrices associated with the M groups as follows:

Vm = AΛmAT with ATA = I (identity matrix), for m = (1, . . . ,M) (1)

where the matrix A = [a(1), . . . , a(H)] contains the vectors of loadings which are assumed to be
common to the various groups and the diagonal matrix Λm is supposed to contain the variances
associated with the group components t(h)m = Xma(h) for dimension h = (1, . . . ,H). Thus,
CPCA stipulates that the vector of loadings, assumed to be orthogonal, are common to the
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FIG. 1: Graphical display of the common vector of loadings (a(1)), the group vectors of load-
ings (a(1)1 , . . . , a(1)M ) and the group components (t(1)1 , . . . , t(1)M ).

various groups but the variances associated to the group principal components are specific to
each group. For determining the CPCA parameters (namely A and Λm), Flury considers a
multinormal setting and uses maximum likelihood estimation. This leads to the so-called F-G
algorithm (Flury and Gautschi, 1986). The appealing feature of this strategy of analysis is
that it makes it possible to set up a hypothesis testing framework. However, the assumption
of multinormal setting may be questionable in many situations and, moreover, the algorithm
is complex, time consuming and may have some convergence problems. In the following, we
discuss simpler alternatives to CPCA method.

2.3 Common variance-covariance matrix
2.3.1 Multi-group principal components analysis

The strategy of analysis, called multi-group principal components analysis (MGPCA) pro-
posed by Krzanowski (1984) is simpler and more straightforward than Flury’s CPCA. Indeed,
Krzanowski (1984) remarks that if Vm = AΛmAT stands for all m then it also stands for the
following linear combination of the variance-covariance matrices (V1, . . . ,VM ):

M∑
m=1

Nm
N

Vm =

M∑
m=1

Nm
N

AΛmAT = A(

M∑
m=1

nm
N

Λm)AT with ATA = I (2)
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Therefore, the matrix of common loadings A could be derived from the eigenanalysis of
the matrix VW =

∑M
m=1

Nm

N Vm which is referred to in the literature as the within groups
variance-covariance matrix. From this standpoint the matrix VW can be seen as a com-
mon variance-covariance matrix to the various groups because it is the closest matrix to
(V1, . . . ,VM ), in the sense that it minimizes the following criterion:

min
Vc

M∑
m=1

Nm ‖ Vm − Vc ‖2 (3)

As a summing up, the strategy of analysis proposed by Krzanowski (1984) consists in com-
puting VW , the within groups variance-covariance matrix. The common vectors of loadings
(a(1), . . . , a(H)) are the eigenvectors of VW . The specific variances of groupm are determined
as λ(h)m = (a(h))TVma(h) for h = (1, . . . ,H).

As a matter of fact, Krzanowski (1984) remarks that if Vm = AΛmAT stands for all m,
then it stands not only for VW , but also for any linear combination of Vm as shown in Eq. (4).

M∑
m=1

αmVm =

M∑
m=1

αmAΛmAT = A(

M∑
m=1

αmΛm)AT with αm ≥ 0 (4)

From this standpoint we may seek a common variance-covariance matrix as a solution to other
optimization criteria than the problem stated above in Eq. (3). This is illustrated by means of
dual STATIS which is discussed in the next section.

It is worth noting that MGPCA amounts to performing PCA on the matrix X obtained by
stacking the group datasets (X1, . . . ,XM ) one above the other. Indeed, it is easy to check that
in this case, we are led to the eigenanalysis of matrix 1

N XTX =
∑M
m=1

Nm

N Vm = VW . The
idea of vertically merging the group datasets and performing a PCA of the matrix thus obtained
stands at the root of the method of analysis introduced by Lê et al. (2010) called dual multiple
factor analysis.

2.3.2 Dual STATIS

As an alternative criterion to the problem stated in Eq. (3), we propose to seek a common
variance-covariance matrix Vc which is a solution to problem (5):

min
Vc,α1,...,αM

M∑
m=1

‖ αmVm − Vc ‖2 with
M∑
m=1

α2
m = 1 (5)

This problem is known as dual STATIS (Lavit et al., 1994). Indeed, STATIS is a popular
method in the field of multi-block data analysis which seeks a common configuration to several
datasets measured on the same individuals. But when these datasets pertain to the same vari-
ables instead of the same individuals, it is referred to as dual STATIS (DSTATIS). The solution
to problem (5) is given by the compromise variance-covariance matrix Vc =

∑M
m=1 αmVm

where α = (α1, . . . , αM )T is the eigenvector of the matrix R = (rik) associated with the
largest eigenvalue, where rik =trace(ViVk) for (i, k = 1, . . . ,M), where ‘trace’ stands, for a
a square matrix, for the sum of the elements on the diagonal. Thereafter, the spectral decom-
position of Vc can be computed as Vc = AΛAT , where A = [a(1), . . . , a(H)] will stand for
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the matrix of common vectors of loadings and Λ is a diagonal matrix. The specific variances
of group m are computed as λ(h)m = (a(h))TVma(h) for dimensions h = (1, . . . ,H).

The interest of DSTATIS over MGPCA is that it takes account of the similarities between
the variance-covariance matrices of the groups. In other words, if the structure of one group
is different from the other groups, then the contribution of this group to the determination of
the common variance-covariance matrix, Vc, will be minimized, i.e., the associated variance-
covariance matrix is downweighted because its associated coefficient αm is relatively small.
This is known as an interesting feature of STATIS and DSTATIS (Lavit et al., 1994).

2.4 Dual generalized Procrustes analysis

As stated above, the rationale behind MGPCA and DSTATIS is to compute a variance-
covariance matrix common to the various groups. Another way to stipulate the same assump-
tion stems from Property 1. Suppose that X1 (n×J) and X2 (n×J) are two centered datasets
which refer to the same J variables but not necessarily to the same individuals. Without any
loss of generality these two datasets are assumed to have the same number of individuals. If
this is not the case then the dataset with the smallest number of rows can be augmented with
the necessary number of rows containing zeroes. The following property holds.

Property 1 The equality XT1 X1 = XT2 X2 holds if and only if XT1 = XT2 H where H is an
orthogonal matrix.

Indeed if XT1 = XT2 H then XT1 X1 = XT2 HHTX2 = XT2 X2. Conversely, suppose that
XT1 X1 = XT2 X2, then the singular value decomposition of XT1 and XT2 can be expressed
as XT1 = UΛ1/2QT

1 and XT2 = UΛ1/2QT
2 , where U is the matrix of eigenvectors of

XT1 X1 = XT2 X2 associated with the eigenvalues in the diagonal matrix Λ. It follows that
XT1 = UΛ1/2QT

1 = UΛ1/2QT
2 Q2QT

1 = XT2 H, with H = Q2QT
1 which is an orthogonal

matrix.
It is worth noting that a similar property pertaining to the case where the two datasets at

hand refer to the same individuals is proven by Glaçon (1981).
The implication of this property in the multi-group setting is that instead of seeking a

common variance-covariance matrix to Vm = 1
Nm

XTmXm = ( 1√
Nm

Xm)T ( 1√
Nm

Xm), one

could look for a dataset that would be some average of groups 1√
Nm

XTm through orthogonal
transforms. This can be achieved by means of generalized Procrustes analysis (GPA) (Gower,
1975). We shall refer to this strategy of analysis as dual GPA (DGPA) as it is based on XTm
instead of Xm. Formally, we seek to minimize the following criterion (6):

M∑
m=1

‖ 1√
Nm

XTmHm − C‖2 (6)

where 1√
Nm

XTm is orthogonally transformed towards the common matrix C by Hm, the or-
thogonal matrix associated with group m. This optimization problem can be solved by one of
the several algorithms for GPA (Gower, 1975; Ten Berge, 1977). Once C is determined, the
common vectors of loadings A = [a(1), . . . , a(H)] are calculated as the left singular vectors of
C. The specific variances of group m are given as usual by λ(h)m = (a(h))TVma(h).
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2.5 Stepwise determination of common vectors of loadings
2.5.1 Between-groups comparison

Instead of determining, in a first step, a variance-covariance matrix common to the various
groups and, in a second step, determining the common vectors of loadings through the spectral
decomposition of this matrix, we adopt a strategy which consists in directly defining, step by
step, the common vectors of loadings. The aim is to seek a(1), a common vector of loadings for
the first dimension (h = 1), and group vectors of loadings respectively associated to the various
groups, namely (a(1)

1 , . . . , a(1)M ) so as to maximize a criterion which reflects the proximity (or
similarity) of the group vectors of loadings (a(1)

1 , . . . , a(1)M ) to the common vector of loadings
a(1). For instance, we consider criterion (7):

M∑
m=1

Nm < a(1)m , a(1) >2=

M∑
m=1

Nm((a(1))T a(1)m )2 with ‖ a(1)m ‖=‖ a(1) ‖= 1 (7)

or equivalently:

M∑
m=1

Nm cos2(a(1)m , a(1)) (8)

where cos(., .) stands for the cosine between two vectors.
In order to solve this problem, we firstly can recall that a vector of loadings associated with

group m is, as stated above, supposed to be a linear combination of the columns of matrix
XTm: a(1)m = XTmt(1)m , where t(1)m is a vector of dimension Nm. Therefore, in criterion (7) (or
equivalently (8)), if we assume that a(1) is fixed, the optimal solution for vector a(1)m is given by
a(1)
m = Pma(1)

‖Pma(1)‖ where Pm = XTm(XmXTm)−1Xm, the projector upon the subspace spanned by

the columns in XTm. So far, we assume that XmXTm is non-singular but we will discuss below
how to proceed if this matrix is singular. If we replace this expression in criterion (7), we are
led to maximizing with respect to a(1) the following expression:

M∑
m=1

Nm(a(1))TPma(1) = (a(1))T
M∑
m=1

NmPma(1) with ‖ a(1) ‖= 1 (9)

It follows that the optimal solution is given by setting a(1) equal to the eigenvector of∑M
m=1NmPm associated with the largest eigenvalues.
Subsequent vectors of loadings (a(2), . . . , a(H)) could be sought by considering the same

maximization problem and adding constraints of orthogonality of the vector of loadings to be
determined at the current stage with those determined at previous stages. As a matter of fact,
this leads to setting the common vectors of loadings to the successive eigenvectors of matrix∑M
m=1 nmPm. It is clear that problem (7) is related to generalized canonical correlation anal-

ysis of the M spaces spanned by the columns of (XT1 , . . . ,X
T
M ), respectively (Carroll, 1968).

The difference of the strategy of analysis followed herein and the usual setting of general-
ized canonical correlation analysis is that we consider the subspaces spanned by the rows of
matrices Xm (m = 1, . . . ,M) whereas in generalized canonical correlation, we consider the
subspaces spanned by the columns.
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As stated above, the solution to the optimization problem (7) assumes that the matrices
XmXTm are invertible. Generally, this assumption does not hold. For instance, for those groups
where the number of variables is smaller than the number of individuals, the (Nm × Nm)
matrices XmXTm are of rank less than Nm and therefore not invertible. In order to circumvent
this problem, we propose to approach by using Eckart and Young (1936) theorem each matrix
XTm by a matrix (X∗m)T of rank k (k < Nm) such that the matrices X∗m(X∗m)T are invertible.
Formally, this can be written as (X∗m)T = L(k)

m Λ(k)
m (Q(k)

m )T (i.e., singular value decomposition
of order k). It follows that

∑M
m=1Nm(X∗m)T (X∗m(X∗m)T )−1X∗m =

∑M
m=1Nm L(k)

m (L(k)
m )T .

This means that apart from the weighting by the size of the various groups, this strategy of
analysis amounts to the method of analysis which was proposed by Krzanowski (1979) under
the appellation "between-groups comparison of principal components". In the following, we
shall refer to this method of analysis as BGC which stands for between-groups comparison.

2.5.2 Multi-group PCA retrieved

We consider the same objective function as in the previous section Eq. (7) but this time we
impose other constraints on the parameters involved. Namely we aim at maximizing:

M∑
m=1

Nm < a(1)m , a(1) >2 with a(1)m = XTmt(1)m and ‖ a(1) ‖=‖ t(1)m ‖= 1 (10)

This amounts to maximizing under the specified constraints:

M∑
m=1

Nm((a(1))TXTmt(1)m )2 (11)

For a fixed vector a(1), the maximum is achieved by setting t(1)m = Xma(1)
‖Xma(1)‖ . Replacing this

expression in Eq. (11), we are led to maximizing:

M∑
m=1

Nm(a(1))TXTmXma(1) = (a(1))T
M∑
m=1

NmXTmXma(1) (12)

It follows that a(1) is an eigenvector of matrix
∑M
m=1NmXTmXm associated with the largest

eigenvalue. Subsequent common vectors of loadings could be sought by considering the same
optimization problem and adding orthogonality constraints of the common vectors of loadings.
It follows that we are led to the same solution as multi-group PCA (MGPCA, section 2.3.1).

All these developments make it possible to highlight a striking difference between the
method BGC (between-groups comparison) developed in the previous section and MGPCA.
It is clear that whereas in MGPCA we aim at recovering the total variance in the various
groups, in BGC the main purpose is to find similar patterns no matter whether these patterns
are linked to directions of high saliency (i.e., total variance) or not. Indeed, in MGPCA, we
aim at maximizing (see Eq. (12)),

M∑
m=1

Nm(a(1))TXTmXma(1) =
M∑
m=1

Nmλ
(1)
m (13)
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where λ(1)m is the variance of the principal component t(1)m = Xma(1). In BGC analysis, it is
clear from criterion (8) that the aim is to find common patterns regardless of their importance
in terms of the total variance recovered. One can draw a parallel between this situation and
generalized canonical correlation (Carroll, 1968) as compared to inter-battery analysis (Tucker,
1958), consensus PCA (Wold et al., 1987) or co-inertia analysis (Hanafi et al., 2011).

2.6 Comparison of methods
The various strategies of determining common vectors of loadings in a multi-group setting

can be divided into two families. In the first family, we find CPCA, MGPCA, DSTATIS and
DGPA. The second family singles out BGC analysis. The methods in the first family aim at re-
covering the total variance in the various data blocks associated with the groups whereas BGC
analysis aims at unveiling common patterns to the data blocks. This means, in particular, that
in this latter method, the first common vector of loadings may not be associated to directions
with relatively large total variances. Within the first family of methods, it is clear that MGPCA
is the simplest and most straightforward method of determination of the common vectors of
loadings. DSTATIS presents the advantage of taking account of the structure of the data in the
various groups and downweighting those blocks of data which do not agree with the general
pattern. As stated in the introduction CPCA, being based on the assumption of a multinormal
setting and maximum likelihood estimation, makes it possible to set up a hypothesis testing
framework. However, the assumption of multinormality may not be granted in some situations
and, in such situations, CPCA may lead to some discrepancies. Another situation which is
worth discussing concerns the case where the variables at hand are not in the same measure-
ment unit. Obviously, a standardization is needed. As stated above, Lê et al. (2010) discussed
a method of analysis called dual multiple factor analysis where they advocate to systematically
standardize the variables in each dataset Xm to unit variance. We have already stressed the
connection of this method of analysis with MGPCA (section 2.3.1).

The methods of analysis discussed in this paper are compared on the basis of three datasets.
We aim at highlighting the similarities and differences between the methods in terms of how
similar the common vectors of loadings obtained by the various methods are, and in terms of
the total variances in the different groups recovered by the successive components.

For the comparison of the common vectors of loadings between methods, we set up, for
each pair of methods, a sequence of indices indexed by the number of components retained in
the model. Each index ranges between 0 and 1 and reflects the extent to which the common
vectors of loadings obtained by the two methods at hand are similar. More precisely, let A =
[a(1), . . . , a(H)] and A∗ = [a∗(1), . . . , a∗(H)] be the matrices of common loadings associated
with two methods to be compared. We will investigate whether these methods lead to similar
vectors of loadings up to a given dimension h for h = (1, . . . ,H). For this purpose we consider
the sequence of similarity indices given by Eq. (14).

S(h) =
1

h

h∑
r=1

|(a(r))T a∗(r)| = 1

h

h∑
r=1

| cos(a(r), a∗(r))| for h = (1, . . . ,H) (14)

By considering the absolute value |(a(r))T a∗(r)|, we take account of the fact that the orientation
of a given vector of loadings is arbitrary. The indices S(h) range between 0 and 1, the value
1 being reached in case of perfect agreement of the vectors of loadings up to dimension h.
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Contrariwise, this index takes the value 0 if (a(1), . . . , a(h)) are respectively orthogonal to
(a∗(1), . . . , a∗(h)).

The methods are also compared on the basis of the total variances in the various groups
recovered by the successive principal components which are given by:

λ(h)m = (a(h))TVma(h) for h = (1, . . . ,H) (15)

or equivalently the percentages of total variance recovered by the principal components:

I(h)m =
λ
(h)
m

trace(Vm)
for h = (1, . . . ,H), m = (1, . . . ,M) (16)

In situations where the aim is to recover as much variation in the dataset as possible, these
percentages should be large.

2.7 Application
2.7.1 Iris data

As a first illustration, we consider the iris flower dataset introduced by Fisher (1936). The
data are available in the R ‘datasets’ package. They consist in (N = 150) iris specimens
sampled from (M = 3) species: Setosa, Virginica and Versicolor, each group containing
(Nm = 50) individuals. Four variables (J = 4) are measured on each flower namely, the
length and the width of sepals and petals. Table 1 shows the similarity indices S(h) between all
the methods under study for the dimensions (h = 1 and 2). The results corresponding to the
subsequent dimensions (h = 3 and 4) are not shown herein since they do not show any specific
pattern in comparison to the first two dimensions. As a general remark we can see (Table 1)
that in spite of the conceptual differences among the methods, the similarity of the results is
very high. By considering the average similarity values for the first dimension (h = 1), it
can be seen that DSTATIS and CPCA are the methods which give the most similar results in
comparison with all other methods. BGC analysis shows the least agreement with the other
methods. For the second dimension (h = 2), DGPA and MGPCA appear to be the methods
which lead to the most similar results to the other methods. Similarly to the first dimension,
BCG analysis is the method with the least agreement with the others.

Table 2 shows that the percentages of total variance recovered by the principal components
in the various groups obtained by the different strategies of analysis under study. On the
average, these percentages are close to each others although we can note that CPCA and BGC
have, on the average, relatively smaller percentages of total variance for the first dimension
and relatively larger percentages of variance recovered by the second dimension. For this latter
dimension, we can note, in particular, the relatively large percentage of total variance in group
Setosa recovered by the principal component obtained by means of CPCA.

2.7.2 Chemical composition of olive oil

The olive oil dataset comes from Forina et al. (1983). The data are available in the R
‘pgmm’ package. These data concern (N = 572) Italian olive oils, sampled from (M =
9) regions of Italy on which (J = 8) fatty acid variables are measured. Table 3 shows the
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The first dimension (h=1)
DGPA DSTATIS MGPCA CPCA BGC

DGPA 1.000
DSTATIS 0.991 1.000
MGPCA 0.998 0.997 1.000
CPCA 0.990 1.000 0.997 1.000
BGC 0.969 0.983 0.977 0.985 1.000
Average 0.987 0.993 0.992 0.993 0.979

The first two dimensions (h = 1 and 2)

DGPA 1.000
DSTATIS 0.976 1.000
MGPCA 0.992 0.961 1.000
CPCA 0.940 0.885 0.973 1.000
BGC 0.934 0.977 0.912 0.833 1.000
Average 0.961 0.950 0.960 0.908 0.914

TAB. 1: Similarity indices S(h) for dimensions (h = 1 and 2). Results from the iris dataset.
Abbreviations: dual generalized Procrustes analysis (DGPA), dual STATIS (DSTATIS), multi-
group principal components analysis (MGPCA), common principal components analysis
(CPCA), between-groups comparison (BGC).

The first dimension (h=1)
XXXXXXXXGroups

Methods
DGPA DSTATIS MGPCA CPCA BGC

Setosa 56.4 47.9 52.5 47.5 45.2
Virginica 76.8 77.6 77.4 77.6 73.7
Versicolor 75.7 78.0 77.1 77.9 76.6
Average 69.6 67.8 69.0 67.7 65.2

The second dimension (h=2)
Setosa 26.4 25.7 32.3 40.6 29.0
Virginica 10.0 10.1 9.3 8.8 13.7
Versicolor 13.0 11.9 11.4 8.5 11.5
Average 16.5 15.9 17.7 19.3 18.1
Cumulated total variance (h=1 and 2) 86.1 83.7 86.7 87.0 83.3

TAB. 2: Percentages of total variance recovered by the first two principal components. Results
from the iris dataset.

similarity coefficients S(h) for the first two dimensions (h = 1 and 2). As for the previous
case study, the remaining dimensions (h = 3, . . . , 8) follow the same pattern and are not shown
herein. The common loadings associated with all the methods under study are highly similar.
For the first two dimensions (h = 1 and 2), the methods DGPA and MGPCA show, on the
average, the highest similarity with the other methods, whereas BGC shows the least similarity
with the other methods.

Table 4 shows the percentages of total variance in the various groups recovered by the prin-
cipal components derived from the various strategies of analysis. The only notable difference
between the methods is the relatively smaller percentage of total variance explained by the
first principal components obtained by means of BGC analysis. However, this difference is
counterbalanced by the second component obtained by BGC analysis which explains a rela-
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The first dimension (h=1)

DGPA DSTATIS MGPCA CPCA BGC
DGPA 1.000
DSTATIS 0.998 1.000
MGPCA 1.000 0.999 1.000
CPCA 1.000 0.997 1.000 1.000
BGC 0.978 0.967 0.976 0.980 1.000
Average 0.994 0.990 0.993 0.994 0.975

The first two dimensions (h = 1 and 2)

DGPA 1.000
DSTATIS 0.998 1.000
MGPCA 0.999 0.999 1.000
CPCA 1.000 0.996 0.999 1.000
BGC 0.967 0.960 0.965 0.966 1.000
Average 0.991 0.988 0.990 0.990 0.965

TAB. 3: Similarity indices S(h) for dimension (h = 1 and 2). Results from the olive oil
dataset.
Abbreviations: dual generalized Procrustes analysis (DGPA), dual STATIS (DSTATIS), multi-
group principal components analysis (MGPCA), common principal components analysis
(CPCA), between-groups comparison (BGC).

tively larger amount of total variance than the second components from the other methods of
analysis.

2.7.3 Veterinary epidemiological data

The epidemiological dataset comes from Rose et al. (2009) (data not yet made public). The
aim of this longitudinal study is to describe a pig disease called Post-weaning Multisystemic
Wasting Syndrome (PMWS). These data include (N = 884, Nm ' 120) randomly selected
pigs sampled from (M = 7) farms on which (J = 19) variables are measured. These variables
are related to the disease status, the animal performance and the farm structure. The variables
being measured on very different scales, they are centered and scaled by group as advocated by
Lê et al. (2010). This case study is interesting because unlike the previous two case studies, it
shows more discrepancies among the different methods for multi-group data analysis. Table 5
shows the similarity indices between the vectors of loadings derived from the methods. It can
be seen that whereas DGPA, DSTATIS and MGPCA seem to be in relatively high agreement,
CPCA and BGC analysis show only a fair agreement between them and with the other methods.

The percentages of total variance (Table 6) in the various groups explained by the principal
components derived from the different strategies of analysis corroborate the same observation.
Indeed, the first family of methods (DGPA, DSTATIS, MGPCA) lead to more or less the same
percentages of total variance explained by the first two principal components whereas both the
first two principal components derived from CPCA and BGC analysis recover less variation
in the various groups. We believe that these differences could be explained by the fact that by
considering the correlation matrices in the various groups instead of the variance-covariance
matrices, we depart from CPCA normal setting which as stated above assumes a multinormal
distribution and derives a solution by maximum likelihood estimation which involves variance-
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The first dimension (h=1)
XXXXXXXXGroups

Methods
DGPA DSTATIS MGPCA CPCA BGC

North-Apulia 78.0 76.5 77.7 78.3 79.6
Calabria 82.4 81.1 82.1 82.5 82.3
South-Apulia 79.1 79.0 79.0 78.8 72.9
Sicily 48.2 47.8 48.1 48.2 47.6
Inland-Sardin 87.9 87.7 87.8 88.0 84.2
Coast-Sardini 90.1 90.6 90.2 89.9 84.6
Umbria 82.1 81.9 82.2 82.1 79.0
East-Liguria 28.9 28.8 29.0 28.5 24.5
West-Liguria 59.0 58.1 58.9 59.1 61.0
Average 70.6 70.2 70.6 70.6 68.4

The second dimension (h=2)
North-Apulia 14.7 15.6 15.0 14.5 12.8
Calabria 10.7 11.4 10.9 10.5 11.1
South-Apulia 15.6 14.6 15.1 15.9 19.5
Sicily 33.3 32.5 32.9 33.6 31.5
Inland-Sardin 7.0 7.0 6.9 7.1 9.1
Coast-Sardini 7.5 7.5 7.6 7.6 11.5
Umbria 14.7 14.9 14.8 14.4 17.0
East-Liguria 28.8 28.0 28.1 28.4 39.9
West-Liguria 30.1 30.8 30.4 30.0 27.6
Average 18.1 18.0 18.0 18.0 20.0
Cumulated total variance (h=1 and 2) 88.7 88.8 88.6 88.6 88.4

TAB. 4: Percentages of total variance recovered by the first two principal components. Results
from the olive oil dataset.

covariance matrices. In the case of BGC analysis, we believe that the difference of its outcomes
with the other methods stem from the fact that we have highlighted above that is, this method
of analysis, unlike MGPCA for instance, does not focus on recovering the variation in the
various groups but is concerned by finding common patterns to the various groups.

3 Conclusion and perspectives
The extension of principal components analysis to multi-group setting makes it possible to

handle the specificity of complex data in various fields. For the purpose of describing a dataset
X with observations a priori divided into M groups, several methods are described. Most of
them can be seen as adaptation of multi-block methods which are concerned with the analysis
of several datasets pertaining to the same individuals to the case where the datasets pertain
to the same variables (and not necessarily to the same individuals). From this standpoint, it
follows that, yet, several other methods could be adapted to this latter context because the
domain of multi-block data analysis has been very fecund these last two or three decades.
This transfer of methodology from multi-block data analysis to multi-group data analysis is
illustrated by dual generalized Procrustes analysis (DGPA) that we have introduced herein
and which turned out to be in high agreement with more known method such as multi-group
PCA (MGPCA). Not only multi-block data analysis offers a wide range of methods but it also
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The first dimension (h=1)

DGPA DSTATIS MGPCA CPCA BGC
DGPA 1.000
DSTATIS 0.967 1.000
MGPCA 0.916 0.984 1.000
CPCA 0.893 0.817 0.711 1.000
BGC 0.823 0.678 0.582 0.771 1.000
Average 0.900 0.862 0.798 0.798 0.713

The first two dimensions (h = 1 and 2)

DGPA 1.000
DSTATIS 0.963 1.000
MGPCA 0.909 0.983 1.000
CPCA 0.646 0.521 0.452 1.000
BGC 0.428 0.346 0.359 0.630 1.000
Average 0.737 0.703 0.676 0.562 0.441

TAB. 5: Similarity indices S(h) for dimension (h = 1 and 2). Results from the epidemiologi-
cal dataset.
Abbreviations: dual generalized Procrustes analysis (DGPA), dual STATIS (DSTATIS), multi-
group principal components analysis (MGPCA), common principal components analysis
(CPCA), between-groups comparison (BGC).

The first dimension (h=1)
XXXXXXXXGroups

Methods
DGPA DSTATIS MGPCA CPCA BGC

Farm1 14.0 13.5 12.8 13.8 12.6
Farm2 22.4 21.6 18.1 24.8 17.2
Farm3 17.9 18.0 17.1 16.0 15.4
Farm4 15.6 19.7 24.2 9.2 11.0
Farm5 8.7 7.3 6.3 9.6 10.8
Farm6 8.1 8.8 9.0 6.4 6.8
Farm7 14.2 13.2 13.3 13.7 16.0
Average 14.4 14.6 14.4 13.4 12.8

The second dimension (h=2)
Farm1 13.8 13.9 13.3 10.3 15.0
Farm2 6.4 8.1 11.0 10.7 19.8
Farm3 14.5 13.6 12.9 11.6 9.6
Farm4 20.3 18.4 16.5 9.8 5.1
Farm5 7.7 9.0 10.1 10.0 11.1
Farm6 6.4 5.5 5.4 7.3 6.8
Farm7 14.2 15.0 14.9 7.8 9.2
Average 11.9 11.9 12 9.6 10.9
Cumulated total variance (h=1 and 2) 26.3 26.5 26.4 23.0 23.7

TAB. 6: Percentages of total variance recovered by the first two principal components. Results
from the epidemiological dataset.

provides visualization and interpretation tools which are helpful to unveil the hidden structure
in the data. Tools for diagnostic assessment are also of paramount importance. Adapted to the
case of multi-group data analysis, these tools could, for instance, highlight some discrepancies
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in the data such as groups of individuals which depart from the assumption of equality of the
variance-covariance matrices.

Another interest of the present research work is to offer a bird’s eye view of the different
methods of analysis of multi-group datasets and highlight their similarities and differences.
From this standpoint, it seems that between-groups comparison (BGC) can be singled out be-
cause its main concern is not to recover the variation in the various groups but to find common
patterns to these groups. We also highlighted the specificity of Flury’s common principal com-
ponents analysis (CPCA). Indeed, this method of analysis being based on the assumption of
multinormality may exhibit some discrepancies if the data show a serious departure from nor-
mality. The remaining methods, namely DGPA, DSTATIS and MGPCA led to very similar
results in the three case studies discussed herein and, judging from their common rationale
which is reflected by the objective functions which are optimized, we believe that this should
be always the case. Among these methods, a particular emphasis should be put on MGPCA
because it is simple and straightforward.

The present research work can be extended in several ways. For instance, we could con-
sider the case of multi-block and multi-group setting where we have more than one dataset
which are partitioned into several groups. With this setting in view, we could also investigate
other aspects than merely describing the structure of the data. For instance, we could investi-
gate predictive models which take account of the presence of groups in the various multi-block
datasets.
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