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Abstract. We address the problem of clustering individuals described with sev-
eral mixed variables divided in homogeneous blocks. We propose a hierarchical
method with two levels to partition the individuals. The method is based on two
successive steps using mixed topological maps combined with agglomerative hi-
erarchical clustering. The proposed approach allows to take into account simul-
taneously qualitative and quantitative variables as well as the variable blocking.
A real example on indoor air quality illustrates the proposed method.

1 Introduction
Clustering analysis is probably one of the most widely used statistical tools in data mining.

In various applications in engineering, biology, business and social sciences classical cluster-
ing methods as well as new approaches are more and more used to reduce huge transactional
and experimental data. These data are often column partitioned, as the variables are divided in
several homogeneous and meaningful blocks. For example in biology or chemistry experimen-
tal analysis, a data block may consist of a set of measurement variables which refer to the same
type of instrument or method used for the analysis; alternatively, a block may contain variables
having biological similarity. In the indoor air quality study which illustrates the method we
propose, several questionnaires related to different possible causes of pollution have been ful-
filled separately. The resulting data sets contains a combination of categorical and continuous
variables, we refer to them as mixed data sets.

The general problem addressed in this paper is discovering unknown homogenous groups
of observations keeping into account the multiblock structure of the data. We propose a hi-
erarchical approach with two levels of clustering using agglomerative hierarchical clustering
combined with mixed topological maps (MTM ) (Lebbah et al., 2005), a modified version
of self organizing map (SOM ) (Kohonen, 1982, 1995, 1998) for mixed variables. The first
step clusters each initial block of variables separately providing local partitions (ie according
to each block). In the second step, based on the results of the former one, the different local
partitions are combined into a single global one. The aim of this approach, called hierarchi-
cal mixed topological map (HMTM ) is interpreting block-specific patterns of heterogeneity
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and providing at the same time a synthesis of the information about the clusters shared by the
blocks.

The remainder of the paper is organized as follows. Section 2 recapitulates the background
on SOM based clustering with mixed data, with a focus on MTM . The proposed method
is described in Section 3 and exemplified on indoor air quality data in Section 4. The paper
closes with a discussion in Section 5.

2 Topological maps for mixed data
The objective of cluster analysis is to discover significant groups of individuals. Clustering

techniques achieve a reduction of the data size by gathering items having similar descriptions
in homogeneous groups well separated and whose members are close to each other according
to some proximity measure. A survey of clustering techniques can be found in Jain (2010).
These methods are also briefly reviewed in Kotsiantis and Pintelas (2004) with a focus on
recent methods of ensemble clustering.

The two most popular approaches to clustering are the agglomerative hierarchical cluster-
ing, that proceeds successively by merging small clusters into larger ones, and the direct parti-
tioning methods such as the widely used K-means and SOM (Kohonen, 1982, 1995, 1998) in
the framework of neural network. This paper is focussed on the partitioning techniques based
on SOM .

Self Organizing Map is an unsupervised learning method that achieves both tasks of non
linear projection and clustering. The genuine version of SOM only processes quantitative
data. Quite recently, new models of topological maps have been proposed for clustering data
with catagorical attributes as well as mixed data sets. Using a probabilistic formulation of
clustering problem as a mixture modeling problem, allows extending the classical gaussian
mixture for numerical variables to others distributions adapted for categorical variables such
as multinomial distributions (Jollois and Nadif, 2002). In particular, extending the mixture
modeling interpretation of SOM to categorical variables distributions leads to probablistic
topological maps (Anouar et al., 1998; Heskes, 2001; Lebbah, 2003; Verbeek et al., 2005).
This subject is not the focus of this paper and will be considered in future work.

A common feature of many methods adapted to handle mixed variables is to transform
categorical variables or adapt distance measures to make it possible to analyze this type of
data using techniques designed for numerical data. (Huang, 1997; Huang and Ng, 1999; Ganti
et al., 1999; Guha et al., 2000). Several authors have contributed to extend SOM to categorical
and mixed variables in this way (Cottrell et al., 2004; Chen and Marques, 2005; Lebbah et al.,
2000, 2005).

Lebbah et al. (2000) proposed the Binbatch algorithm which is based on a binary trans-
formation of the categorical variables and uses the Hamming distance. Then he proposed the
mixed topological map method (Lebbah et al., 2005) that achieves direct clustering of units
described by mixed variables by combining both SOM and Binbatch algorithms. The general
principle of MTM is briefly presented below to facilitate the presentation of HMTM .

The basic idea of MTM , as in SOM , is to display a high dimensional data set in a space
of lower (usually of one or two) dimensions. MTM consists of a set of neurons organized on
a regular grid C called map. The map has a discrete topology defined by a distance σ(c, r)
equal to the length of the shortest path between c and r , a pair of neurons on the graph.
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For each neuron c, this distance allows to define a neighborhood parameterized by a kernel
positive function K(lim(|x|→∞)K(x) = 0) in order to control the neighborhood size. The
KT parameterized family is define by T : KT (σ) = 1

TK( σT ).
Let D be the data space (D ⊂ Rn ) and A = {zi; i = 1, ..., N} the training data set

(A ⊂ D). In MTM , each observation zi ∈ A is considered to be in two parts: numerical
part zri = (zi1, ..., zip)(zi ∈ Rp) and binary part zbi = (zi(p+1), ..., zin) ∈ {0, 1}(n−p). So
zi = (zir, zib) is a mixed vector of dimension n. As in the self organizing map, each cell c of
the grid is associated to a referent vector randomly choosen from the training data set. It is a
mixed vectorwc = (wcr;wcb), wherewcr ∈ Rp andwcb ∈ {0, 1}(n−p). The set of the referent
vectors W is decomposed into W r and W b, respectively the set of numerical and binary part
of the referent vectors. It fully determines the MTM and has to be estimated from A. This is
done iteratively by minimizing a cost function.The MTM algorithm is derived from the batch
versions of the Kohonen algorithm for numerical data and the Binbatch algorithm for binary
data. In this algorithm, the similarity measure and the estimation of the referent vectors are
specific to each part of the data: it is the Euclidean distance dEucl with the mean vector for the
numerical data and the Hamming distance dH with the median center for the binary data. To
ensure all numerical variables have equal influence on distance, they are usually normalized.
Furthermore to avoid favouring either type of variable, the Hamming distance is weighted
using a fixed parameter β. Huang (1997) discusses the effect of this weight choice on the
clustering process. When data are normalized in order to lie in an [0, 1] interval, choosing this
parameter as the ratio between the number of continuous variables and the number of binary
variables is equivalent to normalize each distance to its maximal value. Rogovschi et al. (2011)
propose adaptative weights which have to be estimated iteratively in a supplementary step of
the MTM process. This issue of adaptive weighting is not tackled in this paper.

The MTM cost function is:

JTMTM (Z, ω) =
∑
Zi∈A

∑
c∈C

KT (σ(X(zi), c))(dEucl(zir, ωcr) + βdH(zib, ωcb)) (1)

JTMTM (Z, ω) = JTSOM (Z, ω)+βJTBin(Z, ω) where JSOM (X,W ) is the SOM cost func-
tion, and Jbin(X,W ) =

∑
Zi∈A

∑
c∈C KT (σ(X(zi), c))dH(zib, ωcb) is the cost function

used in the Binbatch algorithm, here weighted by β = p
(n−p)

The minimization of the MTM cost function is made using batch iterative process with
two steps as in the SOM algorithm (Anouar et al., 1998; Luttrell, 1994) which can be ex-
pressed as a dynamic cluster method (Diday and Simon, 1976).

– Assignment step : assuming that W is fixed, JMTM has to be minimized with respect to
X . This leads to the following assignment function:

X(zi) = argminc∈C ||zi − ωc||2 = argminc∈C(dEucl(zir, ωcr) + dH(zib, ωcb)) (2)

– Minimization step : assuming that X is fixed, this step minimizes JMTM (X,W ) with
respect to W in the space Rp × {0, 1}n−p. The minimization of the cost function (1)
leads to minimize the function JSOM (X,W ) in Rp and Jbin(X,W ) in {0, 1}(n−p) .
These two minimizations allow to define the numerical part wcr as in SOM and the
binary part wcb of the referent vector wc as the median center of the binary part of
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the observations zi ∈ A weighted by KT (σ(X(zi), c)). Each component of wc =
(wcr;wcb) is then computed as follows:
for the quantitative part:

ωcr =

∑
r∈C K

T (σ(X(zi), c)), zi∑
r∈C K

T (σ(X(zi), c))
(3)

for the binary part:

wcbk =


0 if

∑
zi∈A

KT (σ(X(zi), c))(1− zkib) >
∑
zi∈A

KT (σ(X(zi), c))z
k
ib

1 otherwise

(4)

The nature of the topological model reached at the end of the algorithm, the quality of the
clustering and the topological order induced by the graph greatly depend on the neighborhood
function K. In practice, a parametrized function KT is used to control the size of the neigh-
borhood KT (σ(r, c)) = exp(σ(r,c)T ). For a given value of T , the batch algorithm leads to
local minimum of the cost function with respect to X and W (Anouar et al., 1998). To avoid
local mimima several runs of the algorithm with different starting points are done and the best
partition is choosen. The previous iterations are repeated with T decreasing from an initial
value Tmax to a final value Tmin.
At the end of the learning algorithm, the minimized cost function can be seen as a K-means
one, but MTM takes into account the topological constraints. MTM inherits the SOM
properties, such as the property of topology conservation and robustness which are the main
characteristic of SOM compared to other clustering methods like K-means. As in SOM the
individuals are put on the map while keeping the neighborhood in such way that similar in-
dividuals in the original space will be close on the map. An outlier affects only one referent
and its neighborhood, thus it can be easily detected from the map since its distance in the in-
put space from other units is large. This property can be useful in real life application where
outliers may exist. Additionally, there is a difference from a pratical point of view: in the K-
means clustering the number of clusters should be choosen according to the number of clusters
there are in the data (which is unknown), in the SOM the number of reference vectors can be
choosen to be larger, not necessary respective of the number of clusters (Kaski, 1997). It has to
be noticed that the referent vectors obtained at the end of the MTM process, share the same
code with the initial observations and then can be decoded in the same way, allowing a direct
interpretation of the binary part of the referent vectors.

There are other methods that extend SOM to categorical and mixed variables. Cottrell
et al. (2004) present in a unified way several SOM based methods (Cottrell and Rousset,
1997; Cottrell et al., 1998). They consist in applying the SOM algorithm on transformed data:
Burt matrix in KMCA or complete disjunctive table for KMCAind and KDISJ and the chi
square distance (or Euclidian distance on corrected Burt or disjunctive tables) is used in both
cases. For mixed variables, they proposed additional preprocessings of the data using SOM
followed by AHC on the quantitative variables to define a new qualitative variable whose cat-
egories are the labels of the AHC cluster. Then KMCA is used on the new table obtained by
adding the new cluster variable to the other (original) qualitative variables. This does not allow
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direct interpretation of the referent vector as pointed in (Lebbah, 2003). They also propose
to transform qualitative variables into numerical ones by a multiple correspondance analysis
(MCA) and then keeping all the factorial coordinates it is possible to use the classical SOM .
Chen and Marques (2005) propose NCSOM to tackle the mixed variable problem using a
combination of the mismatch measurement for the categorical features and euclidian distance
equally weighted. NCSOM add to the SOM process an additional step based on a threshold
which has to be fixed.

It could be interesting to conduct a comparative study of these approaches but it is not the
purpose of this paper.

3 Hierarchical Mixed Topological Maps

Hierarchical methods such as HPCA and CPCA (Westerhuis et al., 1998) have been
proposed to analyze data sets with very large number of variables which can be structured in
conceptually meaningful blocks. They are used in order to improve interpretability of multi-
variate analysis of a data set when the results are difficult to interpret due to the huge number
variables. In HPCA, the variable blocking is taken into account and that leads to a two level
model: the local or lower level, in which the standard method (PCA ) is performed on each
block separately, and the upper or global level, where the relationship between blocks are mod-
eled by running again the standard method on the block scores. The principles of hierarchical
and multiblock PCA is reviewed in Wold et al. (1996) and reconsidered in Westerhuis et al.
(1998) from a theoretical and an algorithmic point of view.They are aimed at summarizing
relationship between variables rather than highlighting heterogeneity between individuals.

For clustering on multiblock mixed data, we propose to extend the hierarchical principle of
Wold’s HPCA to MTM . Thus, HMTM consists of two successive applications of MTM :
first to each of the initial blocks of variables separately and in a second step on the results of
the former step. The method is detailed below.

3.1 Notations

The following notations are adopted in the rest of the paper:
– N : number of individuals indexed i = 1, ..., N
– B : number of blocks indexed b = 1, ..., B
– qb : number of variables in block b
– Zb : an N × qb matrix containing the observed values of N individuals on qb variables
– zbi : an 1× qb vector containing values of individual i in block b
– pb : partition of block b into kb clusters
– bc : cell c of the block b
– wbc : referent vectors of the cell(or cluster) c of the block b
– Wb : an matrix N × qb in which each individual i is represented by its assigned referent

vector
– V : an N × (q1 + ...+ qB) matrix obtained by horizontal merging of Wb

– Ω : space referents at level 2 of HMTM
– Ωc : referent vector of cell c in the map associate of table V
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3.2 HMTM algorithm
The first step ofHMTM consists ofB separated applications ofMTM to each data setZb

. Each MTM process has its own set of parameters, no constraints on the number of referents
as in some consensus methods. This will be discussed later. Through the iterative process
described in section 2 the cost function to minimize is JMTM (X,W ) defined in relation (2).

Thus the first part of the HMTM method will provide B maps defining the B best par-
titions pb. In order to facilitate the cluster interpretation task, we applied an Agglomerative
Hierarchical Clustering (AHC)to reduce the number of clusters. This will be illustrated in the
case study in section 4.

Starting from the partitions pb, we propose to represent each of the N initial observations
by its assigned referent vector wbc corresponding to the cell bc (or cluster) to which the obser-
vation belongs in the MTM map of block b. This prototype representation yields B new data
sets, each denotedWb, summarizing the local structure of the individuals according to the vari-
ables of block b. Afterwards these data sets are horizontally merged in a unique table V which
is used as the input for the second level of HMTM (Fig.1). More precisely, in the second
step, each of the N initial observations is described by vi = (w1ci, ..., wBci). The new matrix
V is then used to perform the second MTM algorithm with its own set of parameters. So
HMTM is an adaptation of the hierarchical principal component analysis (Wold et al., 1996)
to clustering with few slight differences as it will be discussed below. The whole HMTM
process is presented in Fig.1 below.

The cost function of the second step is then JTHMTM and the iterative process yields the
following solutions for the qualitative and quantitative part of the referent vectors :

JTHMTM (Z,Ω) =
∑
Vi∈A

∑
c∈C

KT (σ(X(Vi), c))(dEucl(V
r
i ,Ω

r
c) + dH(V bi ,Ω

b
c)) (5)

Ωrc =

∑
r∈C K

T (σ(X(Vi), c))Vi∑
r∈C K

T (σ(X(Vi), c))
(6)

for binary part

Ωbkc =


0 if

∑
Vi∈A

KT (σ(X(Vi), c))(1− Vi)bk >
∑
Vi∈A

KT (σ(X(Vi), c))V
bk
i

1 otherwise

(7)

As for the maps of the first level, an agglomerative hierarchical clustering can be performed
from the second level map to obtain a reduced number of easier interpretable clusters. While
being ignored in derivation of local partitions, relationships among variables of different blocks
are taken into account at the second level. The summarized representation can be seen as a way
of fusing the blocks after having reduced the block information using the referent vectors. The
resulting global clustering yields a combination of local partitions.



Niang et al.

3.3 Cluster quality and interpretation

As clusters to discover are unknown a priori, the final partitions of a data set require some
kind of quantitative evaluation in most of applications (Halkidi et al., 2001). Several relative
criteria have been proposed. In an evaluation study of thirty validity indices (Milligan and
Cooper, 1985) it is noted that the results are likely to be data dependent.

To assess the map quality we use the basic Davies-Bouldin index DBK (Davies and
Bouldin, 1979) for its simplicity and interpretability in terms of average dispersion. Other
validity indices like the silhouette-value (Rousseeuw, 1987) or the Hubert statistic (Hubert
and Arabie, 1985; Arabie and Hubert, 1994) can also be used. The DBK index (Davies and
Bouldin, 1979) is defined as:

DBk =
1

K

K∑
k=1

max
i 6=j

Ri +Rj
Rij

(8)
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where K is the number of clusters, Ri is the average distance of all individuals in the
cluster Ci to their cluster center ci and Rij is the distance between the cluster centers ci and cj
. Hence, small values of Davies-Bouldin involve that clusters are compact and far from each
other.

Other choices of the measure of dispersion of a cluster and the dissimilarity between two
clusters yield differentDBK index (Davies and Bouldin, 1979) . TheDBK index in the above
definition is the average similarity between each cluster and its most similar one. The DBK
index exhibits no trends with respect to the number of clusters and thus the minimum value of
DBK in its plot versus the number of clusters will provide the best partition.

For interpreting clusters, we determine the most important variables characterizing the
partition through a Wilcoxon test (Hollander, 1973) for numerical attributes and through a
comparison test of proportion for categorical attributes (Lebart et al., 2006).

4 Application to indoor air quality data
Now we present an application of HMTM to illustrate the effect of taking into account

the block structure of the variables on the quality of the partitions and on the interpretation of
the clusters.

4.1 Data presentation
The data was collected in the framework of the national survey carried out by the Indoor

Air Quality Observatory (IAQO) from October 2003 to December 2005 (Kirchner et al., 2009).
The study consisted in a cross-sectional survey in sample of dwellings drawn from the entire
sample of all principal residences in mainland France (24 millions). A three-stage random se-
lection procedure was used to obtain a representative sample of dwellings taking into account
the municipalities proportion to their number of main residences, the land registry sections
within municipalities and main residences within the land registry section. The final sample
included 567 main residences distributed among 74 municipalities of 55 departments and 19
regions. Different categories of questionnaires were used in addition to the measurement of
key pollutants and parameters selected on the basis of their potential impact on air quality. A
face-to-face household questionnaire described outdoor environment, building characteristics,
equipments, and occupants living and cleaning habits. More than 650 variables were collected
per dwelling. After preliminary studies 125 mixed variables were extracted from the initial
data set. These variables were divided into three meaningful blocks describing respectively:
the structure of the dwelling (32 quantitative variables and 39 qualitative variables), the char-
acteristics of the household (5 quantitative variables and 6 qualitative variables) and the living
habits of the inhabitants (21 quantitative variables and 23 qualitative variables). The block of
pollutants attributes not considered in this application will be used in secondary analysis to
study potential links between the pollutants and the dwellings characteristics.

4.2 Application of HMTM
HMTM was applied to the 125 mixed variables structured in three blocks. This provides

three structures of the dwellings according to the separated blocks and their combined partition
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and gives their cluster characterization with the variables used to get the partitions. TheMTM
learning process has been performed separately several times on blocks of variables by varying
the parameters of the cost function, the number of iterations and the map dimensions. The
basic Davies Bouldin-index was choosen for cluster validity studies giving then the best map
for each block. A map of 8 × 8 neurons, corresponding to 64 clusters, is obtained for the
structure of the dwelling block. The habits of inhabitants block gives a 9× 9 map (81 clusters)
and the block of characteristics of the household yields a map with 6×6 neurons (36 clusters).
Then the three partitions results are merged in the summarized data set denoted V which is
used afterwards to perform the second MTM learning process. The final global partition is
obtained with a map of 7× 7 neurons (49 clusters). The numbers of clusters provided by local
partitions as well as the global one are relative large. So starting with the three local maps
corresponding to the structure of the dwelling, the characteristics of the household and the
living habits of the inhabitants we apply an agglomerative hierarchical clustering which yields
final local partitions of dwellings with reduced number of clusters respectively equal to 5, 6,
and 8. Figure 2 shows the map on which the final local partition is visualized only for the
structure of the dwellings block for shortness. The Davies-Bouldin index evolutions for the
MTM process and for the hierarchical clustering are also presented. Its values are 0.95, 0.92,
and 1.15 respectively for the block of the structure of the dwellings, the characteristics of the
household and the habits of the inhabitants. As the Davie-Bouldin index is independent of the
cluster number, it can be considered as a quality indicator of different clusterings of the blocks
inHMTM level 1. After theAHC the final local partitions allow an easier characterization of
groups of dwellings focused on variables specific to each block. The 49 clusters of the global
map have been also reduced by AHC into 8 groups interpreted using all the variables figure
2(b). The detailed interpretations of the partitions have been done using the topological map
visualization capabalities and the statistical tests cited in subsection 3.3. TAB-2 presents the
list of main significant variables. For this present application, we are interessed in comparing
the partitions and highligthing the main impacts on significant variables for the clusters, in
order to illustrate the effect of taking into account the block structure. Local partitions from
the level 1, the final level 2 partition of HMTM and a direct partition on the unblocked data
are compared in terms of Rand index.

The C code used to implement the algorithms for the mixed topological maps is available
at https://docs.google.com/folder/d/0B0lRULTv1q7XblpRVVY1UHNMWlE/edit.
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(a) (b)

(c)

FIG. 1 – The choice of the best clustering: (a) the Davies-Bouldin index for different initializa-
tions of parameters learning; (b)The final clusters obtained after level 1 of the HMTM followed
by a Agglomerative Hierarchical Clustering for the block of structure of dwellings; and, (c)
the final map;

(a) (b)

FIG. 2 – The choice of the best clustering: (a) The final clusters obtained after level 2 of the
HMTM followed by a Agglomerative Hierarchical Clustering and (b) the final map;
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(a) (b)

FIG. 3 – (a) The final clusters of the MTMgen followed by a Agglomerative Hierarchical
Clustering and (b) Davies-Bouldin index;

Cluster interpretation

In the block of the structure of the dwelling, a local partition of the individuals into five
clusters is obtained. The most characteristic variables of these clusters are: the surface of the
dwelling (HSRF), the age of the building (NIACE) and the furniture inside the home (wall and
soil surface treatment, agglomerate and solid woods, wood furniture rate (TMM1, TMMB1,
TMMB2, TRS2,...). For example, cluster 1 contains the recent small collective houses (HSRF-,
NIACE+). Cluster 4 includes the big individual houses (HSRF+) with a lot of combustion ap-
pliances connected to a flue (NSQ31+). TAB-2 details the results of the partitions and the list of
most significant variables characterizing the clusters. It is also possible to use the variables of
the other blocks as supplementary variables to enrich the cluster interpretation. We found that
only two variables from the block of habits of the inhabitants related to the house maintaining
(ACT) and personal care habits (QPPB2) and few variables of the household block ( income
(REV), age of housholder (AGE), size of the family (NPB), young children (NBPEI10)) can
be used to significantly characterize the clusters of the partition of the block of the dwellings
structure.

According to DBk index, household block provides the best clustering structure. In its
local partition into six clusters, the most characteristic variables for the clusters are: house-
hold income (REV), the family size (NBP), age of housholder (AGE). Using supplementary
variables from the other blocks we found previously significant variables (TRS2, TMM1,
NBPEI10 ) which are no more significant for the interpretation of the partition (see TAB-2).
Thus, from a partition to another, there is a loss of the variable information in the interpretation
of the clusters : a variable which significantly distinguishes two clusters of one partition does
not do the same for the other partition when it is used as supplementary variable an vice versa.
Similar problems in the interpretation affect the block of habits of inhabitants.

This short comparison of list of significant variables allows to see that it is not very rea-
sonable to choose the best local partition as the one corresponding to the structure of the in-
dividuals and use the variables of other blocks to interpret it. To obtain a more interpretable
characterization of the clusters using all the available information carried by the whole set of
variables the global analysis at level 2 is necessary.
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This second step analysis provides a final global partition into eight clusters. The most
significant variables in the interpretation of the clusters are the same as those of the local
partitions: REV, NBP, AGE, NBPEI10, TRS2, TMM1, TMMB1 among others. Moreover,
new significant variables appear unlike in the local partition of each block separately: children
older than ten years (NBPSE10) or ICOS3, QME1, TMM3 for example. The description
obtained at the level 2 combines variables of each block highlighting the relationship between
them (see TAB-2).

Partition comparison

The simplest way for combining the variables consists in fusing the blocks directly without
reduction using referent vector. Applying MTM on the unblocked data set directly provides
a single partition (MTMgen). Notice that this would not allow a detailed study of individuals
only based on the variables belonging to the same block. Table 2 contains the Rand indices
to compare this partition and those provided by the two levels of HMTM to each other. The
highest values correspond toHMTM , that meansHMTM global partition has a higher level
of agreement with the local partitions than the MTMgen partition. Furthermore HMTM
realizes the best consensus among the local partitions. Another feature in this table is the quite
important values (around 0.70) of the Rand indices between local partitions. This indicates that
the blocks share an important part of the information underlying the structure of the individuals
which has been captured by level 1 clustering. Despite this high similarity with each other, the
blocks of variables have their own part of specific information which the level two analysis
attempts to capture quite successfully.

Figures 1(c), 2(b) and 3(a) show the topological maps provided by the MTM on a block
(the “Dwellings" block is used as an example), HMTM and MTMgen respectively. As one
can expect, specific block partitions are more homogeneous (in “Dwellings" block case, DB
index equals 0.95); HMTM is able to keep a quite well structured map (DB= 1.19), whereas
MTMgen yields a poorly structured map (DB= 1.87).

Dwelling Household Habits HMTM MTMgen

Dwelling 1 0.69 0.70 0.82 0.73
Household 1 0.68 0.68 0.67

Habits 1 0.72 0.66
HMTM 1 0.70
MTMgen 1

TAB. 1 – Rand indices for comparing partitions: Dewlling, Household, Habits, HMTM,
MTMgen correspond to partitions obtained from dwellings blocks, household block, habits
block, level 2 of HMTM and finally the partition obtained on the data set of unblocked vari-
ables
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Block 1 Dwellings Active variables Supplementary Household Supplementary Habits

Classe 1 (86 obs) HSRF-, NIACE+, TMMB2+, TRS2+ NBP ACT

Classe 2 (197 obs) HSRF-, TMMB2+, TRS2+ REV, QPPB2

Classe 3 (75 obs) NIACE+, TMMB1+, TRS2- AGE, NBP

Classe 4 (72) HSRF+, TMMB1+, NSQ31+, AGE, NBPEI10

Classe 5 (137) HSRF+, TMM1+ AGE, NBP

Variables HSRF, NIACE, TMM1, TMMB1,
TMMB2, TRS2, NSQ31

NBP, NBPEI10, REV, AGE ACT, QPPB2

Block 2 Household Supplementary Dwellings Active variables Supplementary Habits

Classe 1 (56 obs) NSQ31 AGE+, REV-, NBP-

Classe 2 (37 obs) HSRF, NSQ31 NBP- ACT, QPPB2

Classe 3 (187 obs) NSQ31, TMMB2 REV+, NBP+, ACT, CUI1

Classe 4 (115 obs) HSRF, NSQ31, TMMB1 AGE-, NBP+ ACT, CUI1

Classe 5 (106 obs) HSRF, NIACE AGE-, REV-, NBP- ACT, CUI1

Classe 6 (66 obs) AGE-, REV+, NBP+, CUI1

Variables HSRF, NSQ31, TMMB2, NIACE,

TMMB1

AGE, REV, NBP ACT, QPPB2, CUI1

Block 3 Habits Supplementary Dwellings Supplementary Household Active variables

Classe 1 (65 obs ) NBP- QPD2b+,

Classe 2 (150 obs) HSRF AGE, NBP, REV CUI1+, QME2+

Classe 3 (187 obs ) HSRF AGE, NBP, REV ACT+, QPPB2+

Classe 4 (187) NBP ACT+, CUI1+

Classe 5 (82 obs) ACT-, CUI1-

Classe 6 (129 obs) NBP ACT-

Classe 7 (38 obs) HSRF AGE, NBP, REV ACT+, CUI1+, QPD2b-

Variables HSRF NBP, REV, AGE ACT, QPPB2, CUI1, QPD2b, QME2

HMTM Dwellings Household Habits

Classe 1 (42 obs) TMM1+, HSRF+, NSQ31- NBEI10+ ICOS3-, QPE1b-,

Classe 2 (40 obs) TMMB1+, TMM3+, TMMB2-, TRS2- AGE+, NBP- CUI1+, QPD2b+, QME2+, ICOS3-

Classe 3 (55 obs) TMMB1+, HSRF+, NSQ31+, TRS2-,

TMMB2-

NBP+, REV+, NBPES10+ ACT+, CUI1+, QME2+

Classe 4 (97 obs) TMM1+, TMMB1+, HSRF+, NSQ31-,

NIACE-, TRS2-, TMMB2-

REV+, AGE+ QME1-

Classe 5 (87 obs) TMM1-, HSRF-, NIACE+ NBES10+, NBEI10+, NBP+, REV+,

AGE-

ACT+, CUI1+

Classe 6 (86 obs) TMM1-, TMMB1-, HSRF-, NSQ31-, NI-

ACE+, TMMB2+, TRS2+

REV+, NBES10- QPPB2-

Classe 7 (104 obs) TMMB1-, HSRF-, NSQ31-, NIACE-,

TRS2+, TMMB2+

AGE-, REV-, NBP-, NBES10- CUI1, ACT-, QME1-, QPPB2-

Classe 8 (56 obs) TMM1+, NSQ31- NBES10+, NBP+, AGE- ACT+, QME1+, QPD2b+

Variables HSRF, NSQ31, TMMB1, TMMB2,

TMM1, TMM3, NIACE, TRS2

NBP, REV, AGE, NBPES10, NBPEI10 ACT, QPPB2, QME1, QME2, QPD2b,

CUI1, QPE1b, ICOS3

TAB. 2 – Description of each cluster obtain by MTM applying on the blocks of Dwellings,
Household and Habits, and description of cluster obtain by HMTM ; (+) is high value and (-)
is small value of variables on the cluster
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5 Alternative solutions
HMTM is a two level clustering method which realizes a consensus of block-specific

partitions. In this section we discuss briefly alternative methods for clustering block structured
data and possible extensions of the method.

5.1 Consensus methods
Clustering multiblock data has been addressed by several consensus methods proposed by

authors such as (Green et al., 1993; Vichi, 1998, 1999) among others. A survey on these meth-
ods can be found in Day (1986). The principal idea of these consensus methods is to agglom-
erate the separate partitions obtain from each block into a global partition which has to be the
most similar to the contributory partitions according to some index like the Rand index. Only
the labels of the clusters are used through a categorical variable unlike in HMTM . Further-
more, these methods usually require that the local partitions have the same number of clusters
which have to fixed a priori. This constraint does not exist for consensus methods based on
agglomerative hierarchical clustering as in PRINcipal CLassification Analysis (PRINCLA)
(Vichi, 1998) which searches for consensus of dendrogram rather than consensus of partitions
as in Green et al. (1993). Other more recent methods in the ensemble clustering approach
(Johansson et al., 2008) also addressed the multiblock clustering. A common feature of all
these methods is that they do not really handle blocks of mixed variables. They are either de-
signed exclusively for numerical variables or they split each mixed data set into two data sets
separating numerical and categorical variables loosing the meaningful concept of the block.

5.2 Tandem clustering
Factorial analysis of mixed variables can be performed through methods such as categorical

principal component analysis and optimal scaling methods in general (Tenenhaus and Young,
1985) or multiple factorial analysis (MFA) (Escofier and Pagès, 1994), respectively dedicated
to the analysis of one table or multiple data sets. So they can be used in the two-step approach
called tandem clustering which consists in clustering on optimal components provided by a
factorial method. The problem here is how to choose these components. Many warnings have
been made against this two-step approach (Hubert and Arabie, 1985; Arabie and Hubert, 1994)
because factorial analysis may identify dimensions that do not necessarily contribute to detect
the clustering structure in the data and may obscure the recovery of underlying cluster structure.
To overcome these drawbacks several methods have been proposed such as Reduced-K-Means
RKM (De Soete and Carroll, 1994) and Factorial-K-Means FKM (Vichi and Kiers, 2001)
These alternatives to the widely used tandem clustering are reconsidered and compared both
theoretically and empirically in (Timmerman et al., 2010). These clustering methods are aimed
at simultaneously achieving a clustering of the individuals and a dimension reduction of the
variables. An alternative to HMTM could be to extend RKM or FKM to mixed data and
use these extensions instead ofMTM in the fisrt level ofHMTM . However the visualization
capabilities of the topological maps will be lost. Direct clustering methods on mixed variables
such as Mixed Topological Map MTM are a better alternative.

None of the listed alternative methods can be used alone to efficiently address the two
issues tackled simultaneously in HMTM which are the two level clustering and the mixture
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of continuous and categorical variables in each block. The advantage of the hierarchical mixed
topological map is it directly clusters individuals described by mixed variables while projecting
thus there is not any dimension choice nor a number of clusters to fixe a priori since each map
has its own set of parameters.

5.3 Weighted clustering

The proposed method is based on an extension of the principle of hierarchical PCA to
clustering. However, in the HMTM method presented here there isn’t any block weighting
unlike for Wold’s method in which a mild weighting according to each block size is introduced
to avoid the blocks with larger number of variables having predominant importance. The
Davies-Bouldin index which can be considered as a partition quality index can be used to
weight the synthetic information coming from each block of level one before using it in the
learning process of level two. They can be used to consolidate the level one results that is to
forced units gathered in level 1 to stay together or to relax the gathering in level 1 clusters in
order to capture new relations which eventually appear when merging the results. It may be also
interesting to consider adaptative weights on variables which have to be estimated iteratively
as in the weighted K-Means (Jing et al., 2004). This integration of a weighting system could
improve the HMTM method by providing both a variable selection based on the resulting
weights (variables with the lowest weights could be discarded) and a true consensus partition
that is a global partition obtained by optimizing an explicitly weighted function of the local
partitions. Moreover, the determination of the most important variables which is inherent to
the estimation of the weights will facilitate the interpretation of the clusters.

Work is in progress on supplementary applications on other real data sets and on simulated
ones to complete the evaluation of HMTM .
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Appendix
Description of variables

Variables Description
HSRF Surface

NIACE Year of building
NSQ31 Number of independent combustion equipment connected to a duct for

smoked in housing
Dwellings TMMB2 Attendance rate of chipboard furniture in the housing (living rooms)

TRS2 Rate of soil in plastic housing (living rooms)
TMMB1 Attendance rate of solid wood furniture in the housing (living rooms)
TMM1 Rate woodwork in the housing (living rooms)
TMM3 Rate wood other than millwork and PVC in the housing (living rooms)
AGE Age of householder
NBP Number of people living in housing

Household REV Incomes
NBPEI10 Number of children under 10 years old
NBPES10 Number of children over 10 years old

ACT Maintains overall housing
Habits CUI1 During the week, how many times have you cooked food in the house?

QPPB2 During the week, have you used in your home pesticides insecticides as
aerosol (for plants, animals, household)?

QPD2b During the week, have you used in your home another type of deodor-
ant (diffuser wick candle, lamp, incense, potpourri, air freshener for
vacuum cleaner, toilet block, solid, gel, etc..

QME1+ During the week, how many times have you clean soil floorclothes?

Table 3 – Main significant variables


