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Abstract

The problem of the proper dimension of a Multiple Correspondence Analysis (MCA) is
discussed, based on both the re-evaluation of the explained inertia sensu Benzécri (1979)
and Greenacre (2006) and a test proposed by Ben Ammou and Saporta (1998). This
leads to the consideration of a better reconstruction of the off-diagonal sub-tables of
the Burt’s table crossing the nominal characters taken into the account. Thus, Greenacre
(1988) Joint Correspondence Analysis (JCA) is introduced and the results obtained on two
applications are shown. The quality of reconstruction of both MCA and JCA solutions are
compared to the Simple Correspondence Analysis results of the two-way tables. It results
that JCA’s reduced-dimensional reconstruction is much better than the MCA’s one, that
reveals highly biased and non-monotonous. Keywords: Correspondence Analysis, Multiple

Correspondence Analysis, Joint Correspondence Analysis.

Résumé

On discute le problème de la dimension d’une Analyse des Correspondances Multiples,
basé soit sur la ré-evaluation de l’inertie expliquée sensu Benzécri (1979) et Greenacre
(2006) et le test proposé par Ben Ammou and Saporta (1998). Ceci conduit à la con-
sidération d’une meilleure reconstruction des sous-tableaux hors-diagonale du tableau de
Burt qui croise les charactères nominaux considérés. On introduit donc l’Analyse des
Correspondances Conjointe (JCA, Greenacre, 1988) et on montre les résultats obtenu
dans deux applications. On compare aussi la qualité de la reconstruction obtenue par les
solutions MCA et JCA avec les résultats de l’Analyse des Correspondances Simples sur
les tableaux à deux voies. l résulte que la reconstruction de dimensione réduite de la JCA
est fort meilleure de celle de la MCA, qui s’avère fort biaisée et non-monotone. Mots-clés:

Analyse des Correspondances Simple, Analyse des Correspondances Multiples, Analyse
des Correspondances Conjointe.

1 Introduction

The identification of the dimension of a data table under study is a crucial issue of most
multidimensional scaling techniques. A distinction should be done between linear scaling, in
which the encapsulated solutions allows an a posteriori choice of the user, and non-linear one,
in which usually the solution dimension is an a priori choice that conditions the results. As the
latter may be only hypothesized, e.g. according to the results of a previous linear scaling that
may be used as a starting configuration, the identification in the linear case has an importance
that goes beyond the simple linear case, to involve most of the analysis that follow the scaling



itself. To quote only some, the number of factors to be interpreted, those on which to attempt
a classification, the dimension in which search for a non-linear solution or for a factor analysis,
etc., are all items that depend on this choice.

In this paper, we deal with this problem in the framework of Multiple Correspondence Anal-
ysis (MCA, Benzécri et al., 1973-82; Greenacre, 1983; Langrand and Pinzón, 2009) in particular
considering its alternative, the Joint Correspondence Analysis (JCA, Greenacre, 1988), whose
solution depends on an a priori selected dimensionality, and the partial reconstruction of the
original data that results by the application of both MCA and JCA reconstruction formulas.

The application of these methods to two examples taken from studies in linguistics (Nardi,
2007; Senna, 2013) will show unexpected results when comparing the reconstruction: even if
JCA was supposed to perform better, the results of MCA, in comparison with those of JCA,
would seriously get questionable its use. Indeed, the application to the Burt’s table of the chi-
square metrics, and the following correspondence analysis, emphasize too much the importance
of the block-diagonal matrices, whose interest is practically null, in respect to the off-diagonal
ones that contain the most interesting information.

2 Theoretical framework

In exploratory multidimensional scaling the identification of the proper dimension of the so-
lution is strictly tied to the crucial distinction between relevant and non-relevant information,
something similar to the identification of errors in classical statistics, but not the same. In this
case, the relevant information is also tied to the possibility to interpret the factors, according to
the paradigms of the method at hand: it may be either the percentage of explained inertia for
the metric scaling or the stress for the non-metric one, these being in practice the most widely
used. Thus, to take into account a large share of inertia or reduce as much as possible the
stress are the most evident rough methods that may be used and a higher-dimensional solution
is normally preferred to a smaller one only if these values are significantly smaller. But how to
evaluate to what extent they are ”significantly smaller”? According to the method at hand, a
solution may be found: for Principal Component Analysis, Jackson (1993) compared some of
the existing ones in literature.

2.1 Singular Value Decomposition and Generalized Singular Value
Decomposition

We may ground our further discussion on the well known Singular Value Decomposition (SVD,
Greenacre, 1983; Abdi, 2007) theorem, that states

Theorem 1. Any real matrix X may be decomposed as X = UΛ1/2V ′, with Λ the diagonal ma-
trix of the real non-negative eigenvalues of XX ′, U the orthogonal matrix of the corresponding
eigenvectors, and V the matrix of eigenvectors of X ′X (with the same eigenvalues), with both
constraints U ′U = I and V ′V = I.

This theorem corresponds to the reconstruction formula of an r-rank matrix

xij =
r∑

α=1

√
λα uiα vjα

on which the Eckart and Young (1936) theorem is based:



Theorem 2. (Eckart and Young) The s-rank reconstruction of any real matrix X, with s < r,
the rank of X, once its singular values are sorted in decreasing order,

xij ≈
s∑

α=1

√
λα uiα vjα

is the best one in the least-squares sense.

Thus, the exploratory analysis paradigm states that the most relevant information is tied
to the largest eigenvalues and the non-relevant to the least ones. The problem of distinguishing
among them, that is to identify at least a tentative cutpoint of either the singular- or the
eigen-values sequence, remains a crucial issue, that seems more easily solved in the case of
Simple Correspondence Analysis (SCA, Benzécri et al., 1973-82; Greenacre, 1983; Langrand
and Pinzón, 2009), since the special chi-square metrics adopted allows some useful solutions
and an easy interpretation of the results.

Indeed, for our purposes, we shall refer to the Generalized Singular Value Decomposition
(GSVD, Greenacre, 1983; Abdi, 2007). For a given matrix X, this involves using two pos-
itive definite square matrices expressing constraints imposed respectively on the rows and
the columns of X. If M and N are such matrices, the GSV D aims at decomposing X as
X = UΛ1/2V ′, under the orthogonality constraints U ′MU = I and V ′NV = I. We shall
express these conditions by saying that U and V are required to be M - and N -orthogonal,
respectively.

Theorem 3. Given two real positive definite matrices M and N , any real matrix X may be
decomposed as X = ŨΛ1/2Ṽ ′, under constraints Ũ ′MŨ = I and Ṽ ′NṼ = I.

The solution is given by the SV D of the matrix X̃ = M1/2XN1/2 = FΛ1/2G′, with F ′F = I,
G′G = I, Ũ = M−1/2F , and Ṽ = N−1/2G. It results that Ũ Ũ ′ = M−1 and Ṽ Ṽ ′ = N−1

respectively.

2.2 Correspondence Analysis

Let N an r× c contingency table, with n = n.. the table grand total, ~r = (p1., ..., pr.)
′ the vector

of row marginal profile (with pij = nij/n), ~c = (p.1, ..., p.c)
′ the vector of column marginal

profile, and Dr = diag(~r), Dc = diag(~c) the corresponding diagonal matrices. The SCA of N
results from the application of GSVD to the contingency table N with the constraints given
by the diagonal matrices Dr and Dc. As a result, the reconstruction formula of N is:

nij = nricj

1 +

min(r,c)−1∑
α=1

√
λα fiα gjα

 .

This results from the formulation of the problem in terms of the best weighed least-squares
approximation of the matrix N by another matrix H of lower rank which minimizes

r∑
i=1

c∑
j=1

(nij − hij)2

eij
=

r∑
i=1

c∑
j=1

(nij − hij)2

nricj
= n−1trace

(
D−1r (N −H)D−1c (N −H)′

)
(1)

where the weights are the inverse of the expected frequencies. Thus, the reconstruction formula
may be well synthesized as

N = n ~r ~c ′ +DrFΛ1/2G′Dc. (2)

As a matter of fact, in order to produce a simultaneous graphical representation, SCA eigenvec-
tors are usually rescaled, by defining as coordinates the quantities Φ = FΛ1/2 and Ψ = GΛ1/2.



With this transformation, and applying the Eckart and Young’s theorem, any reduced rank
approximation obtained by limiting the sum above to the r largest eigenvalues is the best
approximation in the weighed least-squares sense:

nij ≈ nricj

(
1 +

r∑
α=1

1√
λα

φiα ψjα

)
.

It results that the inertia along each dimension α equals χα
2 = nλα. As in SCA the eigenvalues

sum, up to the grand total, to the table chi-square, namely

χ2 = n

min(r,c)−1∑
α=1

λα,

the cutting problem is simply solved by using the classical test for goodness of fit (Kendall and
Stuart, 1961) or more easily through the Malinvaud (1987) test. The test may be applied, as,
for each α-dimensional partial reconstruction, the residuals correspond to

Qα =
∑
ij

(nij − ñαij)2

ñαij
,

asymptotically chi-square-distributed with (r − α− 1)× (c− α− 1) degrees of freedom. In the
formula, ñαij is the cell value estimated by the α-dimensional solution, and the table chi-square
test results when α= 0 and ñ0ij =

ni· n·j
n··

is the expected value under independence. Now,
Malinvaud (1987) showed that, by substituting the estimated cell values with the expected
ones under independence hypothesis, the formula may be approximated by

Q̃α =
∑
ij

(nij − ñαij)2

nricj
= χ2 −

α∑
β=1

χ2
β = n

min(r,c)−1∑
γ=α+1

λγ,

that may be more easily used to check for nullity of the residuals. It is interesting to observe that
to the same property may be associated the partial chi-square test for significance associated
to each eigenvalue, χ2

α = n..λα, with df = (r + c− 2α− 1) (Kendall and Stuart, 1961), to
detect if there are linear ordinations of both rows and column levels that explain the deviation
from expectation (Orlóci, 1978). Whereas Malinvaud’s is an overall test, that may be used
to reject the hypothesis of the residuals randomness, thus suggests to go further in the factors
inspection, this test informs on the existence of a significant one-dimensional relation among the
rows and column levels, independent from the previous ones. Indeed, non-linear relations may
results from the co-occurrence of several one-dimensional solutions (not necessarily significant),
as could be the case of the application in section 3.

2.3 Multiple Correspondence Analysis

It is well known that MCA is but a generalization of SCA and it is based on SCA of either the
indicator matrix Z, whose rows are the units and the columns are all the levels of the considered
variables, or the so-called Burt’s table B = Z ′Z that gathers all contingency tables obtained
by crosstabulating all the variables in Z, including the diagonal tables obtained by crossing
each variable with itself. We drop here other definitions and formulas of both SCA and MCA
and their relations, that may be found, e.g., in Greenacre (1983) or in Langrand and Pinzón
(2009). Suffice here to remind that, in both cases, the chi-square metrics is adopted so that the
interpretation of results ought to be done once again in terms of deviations from expectation.
It is easy to see that in this case the total inertia of Z is Iz = J−Q

Q
, where Q is the number of



variables and J the total number of levels, that is J =
∑Q

i=1 li where liis the number of levels
of the i-th character and that the eigenvectors in SCA of both Z and B are the same, whereas
the B’s eigenvalues are the squares of Z’s: µ2

α = να. Thus, it makes no difference to perform
MCA on either matrix.

As SCA, given a Burt matrix B, MCA may be defined as the weighted least-squares ap-
proximation of B by another matrix H of lower rank, minimizing

n−1Q−2trace
(
D−1r (B −H)D−1r (B −H)′

)
. (3)

Notice how (3) derives from (1). In terms of the subtables, this may be rewritten as

n−1trace
(
D−1(B −H)D−1(B −H)′

)
=

= n−1
Q∑
i=1

Q∑
j=1

trace
(
D−1i (Nij −Hij)D

−1
j (Nij −Hij)

′) ,
where H is the supermatrix of the Hij. Introducing the norm notation

‖A−B‖2ij = trace
(
D−1i (A−B) D−1j (A−B)′

)
the minimization can be written as

n−1
Q∑
i=1

Q∑
j=1

‖Nij −Hij‖2ij . (4)

In MCA the identification of the true dimension is particularly difficult, despite the MCA
is a SCA of a particular table, because the chi-square test has no sense. Indeed, for B a chi-
squared statistic may again be calculated as if it were a contingency table, and this simplifies
as

χ2
B = 2

Q∑
i=1

i−1∑
j=1

χ2
ij + n(J −Q),

where χ2
ij is the chi-squared statistic for the off-diagonal subtable Nij = Z ′iZj crossing the i-th

and the j-th characters, but without the possibility to make a test. Unfortunately neither
Qα nor Q̃α computed on the indicator matrix Z are chi-square distributed (Ben Ammou and
Saporta, 1998), since Z is composed by 0’s and 1’s.

Thus, the only useful information appears to be the tie of MCA with Generalized Canonical
Analysis (sensu Carroll, 1968; Carrol et al., 1986). Indeed, when MCA is seen as the analysis
of a multi-indicator matrix, the square roots of the eigenvalues may be seen as the sum of the
squares of correlations of the corresponding eigenvector with its projections onto the subspaces
spanned by the levels of each character. Albeit it may be interpreted as a degree of coherence
in the meaning of each projection, this property is very difficult to handle, so that its use is very
limited. In practice, the current users are satisfied when the first two-tree factors are enough
larger than the following, regardless of their numerical value or of the percentage of cumulated
inertia, that is generally admitted to be highly underestimated.

The term ”inflation” applied to the high number of eigenvalues of the MCA, derives from
Benzécri (1979) that explains it in terms of the arbitrary number of levels in wich a continuous
character may be discretized to become qualitative and the fact that, if we compare SCA and
MCA applied to the same two characters contingency table, a relation between the eigenvalues
may be found. Indeed, by partitioning a two-characters Burt’s table Z ′Z into submatrices it
can be shown (ibid.) the relation µα = 1±

√
λα

2
that holds among the eigenvalues of Z and those

of the SCA of the contingency table crossing the two characters. In this case, it is evident



that to the eigenvalues λα = 0 of SCA correspond eigenvalues µα = 1
2

of Z and να = 1
4

of B,
whereas to the others two correspond, one of which larger and the other smaller than 1

2
and

1
4

respectively. Generalizing this argument to several characters results in admitting to limit
attention in MCA only to the eigenvalues larger than their mean, that is µ ≥ µα = 1

Q
.

The argument is discussed in detail by both Benzécri (1979) and Greenacre (1988, 2006).
Both authors suggest, in order to get a measure of relative importance of each factor, to re-
evaluate the eigenvalues larger than the mean (equal to 1

Q
) according to the formula

ρ (µα) =

(
Q

Q− 1

)2

(µα − µ)2 , µα ≥ µ =
1

Q
.

Thus, as Benzécri bases his argument on the discretization of a continuous character, he suggests
to consider as total inertia the sum of the re-evaluated eigenvalues and consider as percentage
of explained inertia the ratio ρ(µα)∑

α ρ(µα)
. This results in a dramatic re-evaluation of the relative

importance of the first eigenvalues. On the opposite, Greenacre bases his arguments on the
unusefulness to take into account the diagonal block matrices and the utility to limit attention
only to the total off-diagonal inertia of the table, that is the sum of squared (non-re-evaluated)
eigenvalues minus the diagonal inertia: that is

Q

Q− 1

 ∑
µα>1/Q

µ2
α −

J −Q
Q2

 .

Experiments show that the Greenacre’s reevaluation is always limited to a share of the total
inertia of Burt’s table even by taking into account all the eigenvalues larger than the mean.

An alternative is proposed by Ben Ammou and Saporta (1998, 2003): they suggest to
estimate the significance of the eigenvalues of MCA according to their distribution. If the

characters are independent,
∑J−Q

β=1 µβ = J−Q
Q

and Sµ2 =
∑J−Q

β=1 µ
2
β = J−Q

Q2 +
∑
i6=j φ

2
ij

Q2 with

n..φ
2
ij ≈ χ2

(li−1)(lj−1) , thus,

E[n..φ
2
ij] = E[χ2

ij] = (li − 1)(lj − 1)

so the expectation of the variance S2
µ of the eigenvalues is

σ2 = E[S2
µ] =

1

n..Q2(J −Q)

∑
i 6=j

(li − 1)(lj − 1).

Roughly, one may assume that the interval 1
Q
±2σ should contain about 95% of the eigenvalues.

Indeed, since the kurtosis of the set of eigenvalues is lower than for a normal distribution, the
actual proportion is larger than 95%.

2.4 Joint Correspondence Analysis

Greenacre (1988) criticizes MCA approach since in his opinion ”it is not a natural generalization
of the geometrical [...] or the least squares approach [of SCA]” and proposes his Joint Corre-
spondence Analysis (JCA) as its natural generalization to the case of nominal data, considered
as a set of contingency tables obtained by crossing them on the same individuals. According
to him, in MCA ”appears to be no justification for fitting the diagonal subtables B which
contribute the term n(J −Q) to the total variation”, a term that ”artificially inflates the total
variation to the extent that the percentages accounted for by the major principal axes can be
very low, especially when J − Q is large. A more natural measure of total variation is the



sum
∑∑

q 6=s χ
2
qs. This suggests an alternative generalization of correspondence analysis which

fits only the off-diagonal contingency tables, analogous to factor analysis where values on the
diagonal of the covariance or correlation matrix are of no direct interest.”

Indeed, the proposed redefinition of the total variation, by removing the diagonal block-
matrices, would fix an important bias due to the application to the Burt’s table of the chi-
square metrics, as the diagonal structure of the diagonal block-matrices represents a very high
deviation from the expected values, that MCA analyzes as if it were a true deviation. On this
basis, on the opposite to the current use, this kind of analysis is not really suitable.

So, Greenacre (1988) proposes his Joint Correspondence Analysis (JCA) as a weighed least-
squares approximation aiming at minimizing

n−1
Q∑
i=1

i−1∑
j=1

‖Nij −Hij‖2ij , (5)

instead of (4) with the corresponding χ2
J =

∑Q
i=1

∑i−1
j=1 χ

2
ij, sum of the chi-squares of all off-

diagonal tables, that unfortunately may not be checked for significance.
In order to get the solution, he proposes an alternating least-squares algorithm, based on

the reformulation of (5) as follows:

n−1
Q∑
i=1

i−1∑
j=1

‖Nij −Hij‖2ij = n−1
Q∑
i=1

i−1∑
j=1

‖Nij − n ~ri ~rj ′ − Lij‖2ij (6)

with ~ri the diagonal of the i-th block-diagonal matrix. Calling H and L the supermatrices
gathering the Hij and Lij respectively, Greenacre (1988) states the equivalence of the rank-K
solution of L which satisfies the normal equations in the minimization of the second term of
(6) with the rank-(K + 1) matrix H = ~r ~r ′ + L which satisfies minimizing (5), with ~r the
supervector gathering the Q vectors ~ri.

The matrix approximation L of rank K is of the form L = nDXDβX
′D, where the J ×K

matrix X is normalized as X ′DX = QI, with D = diag(~r). The matrix X of parameters
has rows corresponding to the categories of the variables and columns corresponding to the
dimensions of the solution, that must be chosen in advance. The diagonal matrix Dβ contains
a scale parameter for each dimension. This form of L and the normalization conditions are
chosen to generalize the bivariate case (2). The parameter matrix X is partitioned row-wise
according to the variables as X1, · · · , XQ, where Xq is Jq×K, so that the submatrices of L are
Lqs = nDqXqDβX

′
sDs. There are also inherent centering constraints on X of the form X ′r = 0

due to the orthogonality with the dimension defined by the trivial solution. It is evident that
the dimension of the solution must be chosen in advance.

It is to be noted that fitting the off-diagonal submatrices reminds the MINRES method for
least-squares factor analysis where the off-diagonal elements of a correlation matrix are fitted
(Thomson, 1934, see also Gabriel, 1978).

Thus Greenacre (1988) proposes the approximate reconstruction of the whole matrix B −
n ~r ~r ′, namely

B − n ~r ~r ′ ≈ nDXDβX
′D + C,

where C is a block diagonal matrix with submatrices Cqq, q = 1, ..., Q down the diagonal
and zeros elsewhere. Here, each Cqq is composed by dummy parameters which effectively allow
perfect fitting of the submatrices on the diagonal of B − n ~r ~r ′, thereby eliminating their



influence on the model of interest. The minimization of

B − n ~r ~r ′ = 2n−1
Q∑
i=1

i−1∑
j=1

‖Nij − n ~ri ~rj ′ − Lij‖2ij

+ n−1
Q∑
k=1

‖Nkk − n ~rk ~rk ′ − Lkk − Ckk‖2k .

(7)

is equivalent to minimizing (6) because the latter set of terms in (7) can always be made zero
by setting Cii = Nii − n ~ri ~ri ′ − Lii.

The algorithm proposed by Greenacre (1988) to minimize (7) can be performed iteratively
by alternating between the variables in C and those in X and Dβ as follows:

1. fix the dimension K of the solution.

2. initiate the algorithm with an analysis of the full Burt matrix B, that is

B − n ~r ~r ′ ≈ nDXDβX
′D. (8)

3. limiting attention to the first K dimensions, say the first K columns of X ~x(1), · · · , ~x(K),
(8) can be rewritten as

B − n ~r ~r ′ ≈
K∑
k=1

nβkD~x(k)~x
′
(k)D.

so that, if all quantities except the βk (k = 1,· · · , K) are regarded as fixed, the problem
reduces to a simple weighted least-squares regression (see Greenacre, 1988, for further
details).

4. Keeping X and Dβ fixed, set

Cii = Nii − n ~ri ~ri ′ − nDiXiDβX
′
iDi (i = 1, · · · , Q).

5. Keeping C fixed, minimize with respect to X and Dβ: this is achieved by performing a
correspondence analysis on the table B∗ = B−C, that is the Burt matrix with modified
submatrices on its diagonal, setting X equal to the first K vectors of optimal row or
column parameters and the diagonal of Dβ equal to the square roots of the first K
principal inertias respectively.

6. Iterate the last two steps until convergence.

In the special case Q = 2, where the problem reduces to fitting the single off-diagonal subma-
trix N12, the initial solution described above is optimal and provides the simple correspondence
analysis of N = N12 exactly.

3 Two applications

To deal with both examples, all computations have been performed with the ca package (Ne-
nadic and Greenacre, 2006, 2007) contained in the R environment (R-project, 2009).



3.1 A small example

To show in detail the different behavior of the different correspondence analyses, we refer to
a data set taken from Nardi (2007), consisting in 2000 words taken from four different kind
of periodic reviews (Childish (TC), Review (TR), Divulgation (TD), and Scientific Summary
(TS)), classified according to their grammatical kind (Verb (WV), Noun (WN), and Adjective
(WA)) and the number of internal layers (Two- (L2), Three- (L3), and Four and more layers
(L4)), as a measure of the word complexity.

In Table 1 the Burt’s table that results by crossing the three characters is reported. In
Table 2 are represented the first results of the SCAs of the three contingency data tables,
crossing the three characters two by two, limited to the first two eigenvalues, namely, the
eigenvalues, the percentage of corresponding inertia, and the p-value associated to the chi-
square calculated for the corresponding one-dimensional reconstruction, that in this case is
identical to the Malinvaud’s test, since each solution is 2-dimensional. In two cases, the chi-
squares test that the second factor has no real meaning, since the p-value is larger than 5%,
whereas for the case of the table crossing the type of publication and the kind of words the
second factor is also significant. In Figure 1 the results of the three SCAs are represented too:
it must be pointed out that the vertical position of the items is significant only for the second
graphic. Indeed, the inspection of this factor plane shows an arch pattern due to a Guttman
effect (Guttman, 1941; Camiz, 2005).

Running MCA, the pattern of eigenvalues is represented in Table 3, in which are reported
the singular values of the indicator matrix Z, their percentage to their total (that equals
J−Q
Q

= 2.33), the cumulate percentage, the eigenvalues of the Burt’s matrix, corresponding to
the inertia explained by the factor, and the cumulate inertia.

Indeed, according to both Benzécri (1979) and Greenacre (1988), only three singular values
are larger than 1/Q = 1/3, so that the re-evaluations, reported in Table 4, are referenced to
only three dimensions, albeit the fourth is very close to this value (0.33). In both cases, the
first dimension re-evaluated inertia is by far larger than the others.

If we apply the Ben Ammou and Saporta (1998, 2003) estimation of the average singular
value distribution under independence, we find that the standard deviation is σ = 0.0159364,
so that the confidence interval at 95% level is (0.30146 < λ < 0.36521). As a consequence, only
the first singular value is outside the confidence interval and should be considered significant.
As a matter of facts, the second one is very close to the threshold (0.3640): this is consistent
with the fact that one of the 2-dimensional tables has a significant second eigenvalue.

Let us look now at the one-dimensional reconstruction, as resulting by the SCAs of the three
individual tables, by the MCA, and by Greenacre’s JCA as reported in Table 5. The comparison
of the SCA one-dimensional solutions with the original tables shows that the amount of the
cumulate absolute residuals is in good agreement with the quality of the solution, as represented
by the corresponding chi-square. For this reason, the low quality of the reconstruction of the
table crossing kind of words with the type of publications depends on the significance of the
second dimension of the SCA of this table. At first glance, it is evident the high difference in
the cumulate absolute residuals of MCA in respect to the other solutions, that is an important
sign of the limits of MCA in respect to JCA. Indeed, the quality of JCA one-dimensional
reconstruction is in all cases acceptable, so that it is possible to observe a synthetical graphical
representation of the three tables that is realistic. On the opposite, the MCA reconstruction
is dramatically bad: in Table 6 are reported the cumulate absolute residuals of reconstructions
of both MCA and JCA, both for the whole Burt’s table and for the three off-diagonal two-way
tables. The residuals for 0-dimension are the deviations from independence and the following
are reported for all the allowed dimensions: 7 = J−Q for MCA and 3 for JCA, that corresponds
to the number of singular values of the Burt’s table larger than the mean. Looking at the table,
we may notice a continuous decrease of the total residuals in both analyses, with a perfect fit for



the total reconstruction of MCA, decrease that is somehow slower for JCA. On the opposite, the
off-diagonal reconstruction of JCA is fast and effective, with the 3-dimensional solution nearly
perfect, whereas the reconstruction of MCA follows a very different pattern. Indeed, the off-
diagonal residuals increase progressively, instead of diminishing, until the average eigenvalue,
then lower, but improving the reconstruction in respect to the deviation from independence
only with the last two dimensions.

To graphically study the results, we can now compare the 2-dimensional graphics obtained
by the three SCAs, shown in Figure 1, with those obtained by both MCA and JCA, shown in
Figure 2. The position of the levels of each character are represented on the plane spanned by
the first two factors. Considering also that the second dimension is limited in significance, we
may note that both MCA and JCA factor planes represent a good compromise among the three
2-dimensional graphics. The reciprocal positions of the items are not so different among MCA
and JCA: only WV and TS, are more shifted and their position on JCA plane seemsbetter
reflect their relation with the other levels.

3.2 A larger example

This second example is taken from a work in progress concerning the definition of an index
for the degree of mental disease of patients affected by aphasia (Senna, 2013). For this aim,
46 patients (half of them not affected, taken as control group) were submitted to a test, in
which each one had to identify and verbalize 154 images. In this example we consider six
scale characters taken by the resulting data table: two of them, Time Response (in blue in
the graphics) and Segments Substitution (orange), result from the test itself; two, Frequency
(green) and Primitiveness (red), are features of the images and their name; and two, Time
of disease (black) and Oral Comprehension (dark red), concern the patients’ conditions. The
characters’ levels are 4, 5, 4 , 4 , 5 , and 3, respectively, summarizing 25 levels. In this case,
the Burt’s table is composed by 15 off-diagonal tables and is reported in Table 10.

The MCA gives 19 non-zero eigenvalues, of which 8 above the average (0.1667) and only
5 above the 95% confidence interval upper bound (0.1778), assumed by Ben Ammou and
Saporta (1998, 2003) as a threshold for the number of factors. In Table 7 the sequence of all
the eigenvalues is reported. The inertia re-evaluation is shown in Table 8. Looking at the
re-evaluated values, it results that the factors following the third do not add more than 1% of
inertia, a too small value to deserve being really taken into account. Note that, according to
Benzécri (1979) the three-dimensional representation explains over 98% of total inertia, whereas
according to Greenacre (1988) it is only 74.78% (but indeed 98% of the possible total).

We ran JCA on the same table and we can compare the step-by-step reconstruction with
MCA, as for the other example (see Table 9). Once again are visible both the non-monotonicity
of the MCA off-diagonal pattern and its tremendous reduction in JCA. Concerning the relative
importance of the axes within the three-dimensional solution, we may say that the percentage
of inertia attributed to them is 60.11, 21.89, and 17.99% respectively. It may be noted that,
in respect to the maximum inertia solution obtained, the 8-dimensional one, it represents over
90% of the latter.

Eventually, the pattern of levels of each character on the planes spanned by the factors 1-2
and 1-3 is represented for both MCA and for JCA. Comparing the two graphics in Figure 3,
that is the representation of the trajectories on the factor plane spanned by the axes 1 and
2, it is clearly visible that in JCA their relative range is somehow changed. In particular,
all of them are enlarged in respect to the Segment Substitution one. On this plane, the first
factor opposes the lowest levels on the right side (typical of the non-affected control patients)
to the highest ones on the left. On the other side, it is difficult to derive an interpretation
of the second factor, dominated by the Segment Substitution on the upper side side (with the



minimum folded) and the Oral Comprehension with its intermediate level opposed to both
others on the lower side. As well, the Time of Disease develops most along this factor, but
with a folded pattern. On the following graphics in Figure 4, that represent the pattern on
the plane spanned by the axes 1 and 3, the same adjustment results, that indeed gets more
interpretable the mutual relations between the characters. On the other side, it is evident the
highest agreement of Time of Response and Familiarity both among themselves and with the
third factor, so that they appear really independent from the others. Only for the highest levels
of the other characters there is a slight agreement, but folded, thus of difficult interpretation.
Similar comments may be done on the planes spanned by the axes 2 and 3 (not shown), that
confirm the independence between Time of Response and Familiarity in respect to all other
characters.

4 Conclusion

This study started with the aim to understand to what extent the JCA (Greenacre, 1988)
could be of help in identifying the true dimension of an analysis concerning a set of qualitative
data. In this sense, the confidence interval proposed by Ben Ammou and Saporta (1998, 2003)
seems a useful answer to this problem, in agreement with the most one-dimensional solution
of the SCAs applied to the two-way tables of the first application. During the study, the
problem of the data reconstruction not only showed that MCA is bad in reconstructing the
data table, due to the inflation in the number of eigenelements, but also that the re-evaluations
proposed by both Benzécri (1979) and Greenacre (2006) do not take into account the fact
that the reconstruction of the two-way off-diagonal tables is for the most reduced-dimensional
solutions worst than the initial independence table. This may explain the problem encountered
by both Camiz and Ferrazza (2006) and Camiz and Venditti (2007) that needed the whole
MCA reconstruction to perform a qualitative discriminant analysis sensu Saporta (1975) of
some quality: indeed, the bad reduced dimensional reconstruction could be the cause of the
bad discrimination that resulted by withdrawing the dimensions with lowest inertia. To get
closer to the daily use of the graphics, as a help for the description and the interpretation of the
data, the higher homogeneity of the ranges of the various characters on factor planes of JCA
improves the interpretation ability of the graphics themselves. It is very strange that, despite
the number of studies developed on MCA, no trace results in literature of the serious drawbacks
found in MCA, nor Greenacre (1988) and the followers (Tateneni and Browne, 2000; Vermunt
and Anderson, 2005; Greenacre, 2006) quote their important improvement. Thus, JCA seems
a most promising development and its properties deserve some further deepening.
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Table 1: Burt’s table of the words’ type example.
L2 L3 L4 WN WV WA TC TR TD TS

L2 1512 0 0 788 483 241 433 385 399 295
L3 0 375 0 203 23 149 64 82 86 143
L4 0 0 113 62 9 42 3 29 21 60

WN 788 203 62 1053 0 0 229 284 273 267
WV 483 23 9 0 515 0 174 133 125 83
WA 241 149 42 0 0 432 97 79 108 148
TC 433 64 3 229 174 97 500 0 0 0
TR 385 82 29 284 133 79 0 496 0 0
TD 399 86 21 273 125 108 0 0 506 0
TS 295 143 60 267 83 148 0 0 0 498

L2 L3 L4 WN WV WA TC TR TD TS

Table 2: SCA of the three contingency data tables of words’ type example, crossing the three
characters two by two. In the columns, the eigenvalues, the percentage of inertia, and the
p-value of the chi-square associated to the factors.

words vs. levels publications vs. words publications vs. levels

N. eigen % p-value eigen % p-value eigen % p-value

1 .0925 99.98 .0000 .0253 80.53 .0000 .0619 98.82 .0000
2 .0000 0.02 .8625 .0061 19.47 .0022 .0007 1.18 .4771



Table 3: MCA singular values, percentage to the total and cumulate percentage, eigenvalues,
and cumulate inertia of the Burt’s table of words’ type example.

Number Singular value Percentage Cumulate % Eigenvalue Cumulate inertia

1 0.4896 20.98 20.98 0.239688 0.239688
2 0.3640 15.60 36.58 0.132472 0.372160
3 0.3434 14.72 51.30 0.117930 0.490090
4 0.3300 14.14 65.44 0.108885 0.598975
5 0.3084 13.22 78.66 0.095100 0.694076
6 0.2728 11.69 90.35 0.074431 0.768507
7 0.2252 9.65 100.00 0.050713 0.819220

Table 4: Inertia re-evaluation according to both Benzécri (1979) and Greenacre (1988) of words’
type example.

Benzécri’s Re-evaluation Greenacre’s Re-evaluation
Number Inertia % Cum.% Inertia % Cum.%

1 0.0549 95.91 95.91 0.2344 88.36 88.36
2 0.0021 3.69 99.60 0.0460 3.40 91.76
3 0.0002 0.40 100.00 0.0151 0.37 92.13

Total 0.0572 100.00 0.2954 92.13



Table 5: Original two-way contingency tables of words’ type example and their reconstruction
according to the first dimension of SCAs, MCA, and JCA, with the corresponding cumulate
absolute residuals.

Original Burt’s Matrix
WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 433 385 399 295 WN 229 284 273 267
L3 203 23 149 L3 64 82 86 143 WV 174 133 125 83
L4 62 9 42 L4 3 29 21 60 WA 97 79 108 148

SCA First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 435 382 400 296 WN 253 257 267 276
L3 204 23 149 L3 60 89 85 141 WV 165 144 127 79
L4 61 9 42 L4 5 25 22 61 WA 82 96 112 142

SCA cumulate absolute residuals
2 107 2210

MCA First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 770 559 183 L2 492 409 401 211 WN 249 257 264 283
L3 216 -24 183 L3 13 69 82 211 WV 219 155 145 -3
L4 67 -20 66 L4 -5 18 23 76 WA 32 84 97 219

MCA cumulate absolute residuals
14440 18972 21183

JCA First Layer
WN WV WA TC TR TD TS TC TR TD TS

L2 783 484 245 L2 435 391 393 293 WN 259 260 266 269
L3 207 29 139 L3 53 82 87 153 WV 160 136 136 82
L4 63 2 48 L4 12 24 25 52 WA 81 100 104 147

JCA cumulate absolute residuals
280 488 2570

Table 6: Words’ type example. Absolute residuals of the reduced dimensional reconstructions of
both the Burt’s table and the two-way off-diagonal ones according to MCA and JCA respectively:
to 0 correspond the deviations from independence.

MCA JCA
Dim total Off-diag. total Off-diag.

0 2052807 50788 2052807 50788
1 1426816 54595 1560452 3338
2 1012894 115712 1451977 1003
3 791539 147734 1379887 21
4 570840 120163
5 269518 52164
6 133539 34851
7 0 0



Table 7: Aphasia example: MCA singular values, percentage to the total and cumulate percent-
age, eigenvalues, and cumulate inertia of the Burt’s table.

Number Singular value Percentage Cumulate % Eigenvalue Cumulate inertia

1 0.3831 12.10 12.10 0.146759 0.146759
2 0.2774 8.76 20.86 0.076924 0.223683
3 0.2538 8.01 28.87 0.064394 0.288077
4 0.1951 6.16 35.03 0.038073 0.326150
5 0.1829 5.78 40.81 0.033462 0.359612
6 0.1734 5.48 46.28 0.030081 0.389693
7 0.1729 5.46 51.74 0.029885 0.419578
8 0.1705 5.38 57.13 0.029060 0.448638
9 0.1668 5.27 62.39 0.027825 0.476463
10 0.1655 5.23 67.62 0.027388 0.503851
11 0.1610 5.08 72.70 0.025917 0.529768
12 0.1546 4.88 77.59 0.023903 0.553671
13 0.1467 4.63 82.22 0.021533 0.575204
14 0.1398 4.41 86.64 0.019542 0.594747
15 0.1343 4.24 90.88 0.018035 0.612782
16 0.0928 2.93 93.81 0.008604 0.621386
17 0.0820 2.59 96.40 0.006723 0.628110
18 0.0658 2.08 98.47 0.004328 0.632438
19 0.0484 1.53 100.00 0.002339 0.634777

Table 8: Aphasia example: inertia re-evaluation according to both Benzécri (1979) and
Greenacre (1988)

Benzécri’s Re-evaluation Greenacre’s Re-evaluation
Number Inertia % Cum.% Inertia % Cum.%

1 0.0674 69.04 69.04 0.2597 52.53 52.53
2 0.0176 18.06 87.09 0.1328 13.74 66.27
3 0.0109 11.18 98.27 0.1045 8.51 74.78
4 0.0012 1.19 99.46 0.0341 0.91 75.69
5 0.0004 0.39 99.85 0.0195 0.30 75.98
6 0.0001 0.07 99.92 0.0081 0.05 76.03
7 0.0001 0.06 99.98 0.0074 0.04 76.08
8 0.0000 0.02 100.00 0.0046 0.02 76.09
9 0.0000 0.00 100.00 0.0002 0.00 76.09

Total 0.0977 100.00 0.5710 76.09



Table 9: Aphasia example: absolute residuals of the reduced dimensional reconstructions of both
the Burt’s table and the two-way off-diagonal ones according to MCA and JCA respectively: to
0 correspond the deviations from independence.

MCA JCA
Dim total Off-diag. total Off-diag.

0 84100 17917 84100 17917
1 64651 12369 61508 10275
2 59923 11766 53545 7557
3 48571 7980 41627 3257
4 47619 10017 37899 2255
5 46863 10714 36823 1937
6 46682 11475 34737 1304
7 46134 12377 33401 810
8 44534 13167 32943 685
9 44241 13311 31939 340
10 41003 12687
11 34973 10431
12 33437 9963
13 30953 9617
14 26018 8555
15 18406 5441
16 14641 4559
17 8992 2963
18 4357 1341
19 0 0

Figure 1: Words’ type example: The pair of characters levels on the three two-way SCAs: (a)
Words vs. Levels; (b) Publications vs. Words; (c) Publications vs. Levels.



Figure 2: Words’ type example: representation of the three-characters levels on the plane
spanned by the first two factors: (a) MCA; (b) JCA.

Figure 3: Aphasia example: representation of the six characters trajectories on the plane
spanned by the first two factors: (a) MCA; (b) JCA.



Figure 4: Aphasia example: representation of the six characters trajectories on the plane
spanned by the factors 1 and 3: (a) MCA; (b) JCA.



T
ab

le
10

:
B

u
rt

’s
ta

bl
e

of
th

e
si

x-
ch

ar
ac

te
rs

da
ta

se
t

of
A

ph
as

ia
ex

am
pl

e.
T
im

e
R
e
sp

o
n
se

S
e
g
m
e
n
ts

S
u
b
st
it
u
ti
o
n

F
re

q
u
e
n
c
y

P
ri
m
it
iv
e
n
e
ss

T
im

e
o
f
d
is
e
a
se

O
ra

l
C
o
m
p
re

h
e
n
si
o
n

1
2

3
4

1
2

3
4

5
1

2
3

4
1

2
3

4
1

2
3

4
5

1
2

3
1

2
0
5
6

0
0

0
0

0
0

1
2

2
0
4
4

3
3
6

6
9
3

6
7
0

3
5
7

4
8
0

9
0
8

4
0
3

2
6
5

1
7
4
6

9
8

2
1

1
2
8

6
3

1
9
3
4

3
6

8
6

2
0

2
7
5
6

0
0

8
3

1
2

7
3

2
6
6
0

5
8
2

9
4
2

7
9
9

4
3
3

6
0
1

1
1
0
7

4
9
5

5
5
3

1
5
0
5

3
7
0

1
1
5

5
2
7

2
3
9

2
0
8
3

2
0
5

4
6
8

3
0

0
1
0
5
5

0
2
6

1
0

1
7

1
0
0

9
0
2

2
7
7

4
0
0

2
3
2

1
4
6

2
0
2

3
7
1

1
9
9

2
8
3

2
1
5

2
0
2

1
0
0

3
1
5

2
2
3

5
4
7

1
7
5

3
3
3

4
0

0
0

1
2
1
7

3
1

7
1

6
2

1
1
1
6

3
6
9

4
4
9

2
7
7

1
2
2

1
4
3

4
2
0

2
3
7

4
1
7

7
6

4
0
8

7
2

2
6
2

3
9
9

3
6
4

5
0
8

3
4
5

1
0

8
2
6

3
1

6
5

0
0

0
0

1
6

2
8

1
4

7
1
0

2
0

1
5

2
0

1
1
3

1
1

1
4

2
6

1
5

2
6

2
4

2
0

3
1
0

7
0

2
0

0
0

0
6

7
6

1
2

7
3

8
0

4
5

7
4

2
1

1
7

3
0

1
2

1
7

1
0

0
3
0

0
0

6
1
4

8
2

6
1
3

7
4

3
5

1
1
4

7
6

5
1
9

4
1
2

7
3

1
0
0

6
2

0
0

0
2
4
7

0
9
2

8
0

5
3

2
2

2
3

7
9

6
0

8
5

1
2

4
0

3
0

1
1
2

5
3

6
3

4
3

1
4
1

5
2
0
4
4

2
6
6
0

9
0
2

1
1
1
6

0
0

0
0

6
7
2
2

1
4
4
4

2
3
5
5

1
8
9
7

1
0
2
6

1
3
8
5

2
6
8
7

1
2
4
9

1
4
0
1

3
5
2
6

1
0
1
6

2
6
1

1
0
8
5

8
3
4

4
8
4
2

8
4
9

1
0
3
1

1
3
3
6

5
8
2

2
7
7

3
6
9

1
6

6
6

9
2

1
4
4
4

1
5
6
4

0
0

0
4
6

2
7
6

4
6
0

7
8
2

7
8
2

2
3
8

6
8

2
7
2

2
0
4

1
0
8
8

2
0
4

2
7
2

2
6
9
3

9
4
2

4
0
0

4
4
9

2
8

7
1
4

8
0

2
3
5
5

0
2
4
8
4

0
0

3
2
2

1
1
5
0

5
5
2

4
6
0

1
2
4
2

3
7
8

1
0
8

4
3
2

3
2
4

1
7
2
8

3
2
4

4
3
2

3
6
7
0

7
9
9

2
3
2

2
7
7

1
4

6
8

5
3

1
8
9
7

0
0

1
9
7
8

0
5
9
8

8
7
4

2
7
6

2
3
0

9
8
9

3
0
1

8
6

3
4
4

2
5
8

1
3
7
6

2
5
8

3
4
4

4
3
5
7

4
3
3

1
4
6

1
2
2

7
1

2
2
2

1
0
2
6

0
0

0
1
0
5
8

4
6
0

5
0
6

4
6

4
6

5
2
9

1
6
1

4
6

1
8
4

1
3
8

7
3
6

1
3
8

1
8
4

1
4
8
0

6
0
1

2
0
2

1
4
3

1
0

2
6

2
3

1
3
8
5

4
6

3
2
2

5
9
8

4
6
0

1
4
2
6

0
0

0
7
1
3

2
1
7

6
2

2
4
8

1
8
6

9
9
2

1
8
6

2
4
8

2
9
0
8

1
1
0
7

3
7
1

4
2
0

2
0

7
1
3

7
9

2
6
8
7

2
7
6

1
1
5
0

8
7
4

5
0
6

0
2
8
0
6

0
0

1
4
0
3

4
2
7

1
2
2

4
8
8

3
6
6

1
9
5
2

3
6
6

4
8
8

3
4
0
3

4
9
5

1
9
9

2
3
7

1
5

3
7

6
0

1
2
4
9

4
6
0

5
5
2

2
7
6

4
6

0
0

1
3
3
4

0
6
6
7

2
0
3

5
8

2
3
2

1
7
4

9
2
8

1
7
4

2
3
2

4
2
6
5

5
5
3

2
8
3

4
1
7

2
0

8
4

8
5

1
4
0
1

7
8
2

4
6
0

2
3
0

4
6

0
0

0
1
5
1
8

7
5
9

2
3
1

6
6

2
6
4

1
9
8

1
0
5
6

1
9
8

2
6
4

1
1
7
4
6

1
5
0
5

2
1
5

7
6

1
0

3
1
2

3
5
2
6

7
8
2

1
2
4
2

9
8
9

5
2
9

7
1
3

1
4
0
3

6
6
7

7
5
9

3
5
4
2

0
0

0
0

3
5
4
2

0
0

2
9
8

3
7
0

2
0
2

4
0
8

1
3

4
5

4
0

1
0
1
6

2
3
8

3
7
8

3
0
1

1
6
1

2
1
7

4
2
7

2
0
3

2
3
1

0
1
0
7
8

0
0

0
3
0
8

6
1
6

1
5
4

3
2
1

1
1
5

1
0
0

7
2

1
1

5
1

3
0

2
6
1

6
8

1
0
8

8
6

4
6

6
2

1
2
2

5
8

6
6

0
0

3
0
8

0
0

1
5
4

0
1
5
4

4
1
2
8

5
2
7

3
1
5

2
6
2

1
4

7
1
4

1
1
2

1
0
8
5

2
7
2

4
3
2

3
4
4

1
8
4

2
4
8

4
8
8

2
3
2

2
6
4

0
0

0
1
2
3
2

0
6
1
6

0
6
1
6

5
6
3

2
3
9

2
2
3

3
9
9

2
6

4
7

5
3

8
3
4

2
0
4

3
2
4

2
5
8

1
3
8

1
8
6

3
6
6

1
7
4

1
9
8

0
0

0
0

9
2
4

3
0
8

3
0
8

3
0
8

1
1
9
3
4

2
0
8
3

5
4
7

3
6
4

1
5

2
6

6
3

4
8
4
2

1
0
8
8

1
7
2
8

1
3
7
6

7
3
6

9
9
2

1
9
5
2

9
2
8

1
0
5
6

3
5
4
2

3
0
8

1
5
4

6
1
6

3
0
8

4
9
2
8

0
0

2
3
6

2
0
5

1
7
5

5
0
8

2
6

1
5

4
3

8
4
9

2
0
4

3
2
4

2
5
8

1
3
8

1
8
6

3
6
6

1
7
4

1
9
8

0
6
1
6

0
0

3
0
8

0
9
2
4

0
3

8
6

4
6
8

3
3
3

3
4
5

2
4

1
7

1
9

1
4
1

1
0
3
1

2
7
2

4
3
2

3
4
4

1
8
4

2
4
8

4
8
8

2
3
2

2
6
4

0
1
5
4

1
5
4

6
1
6

3
0
8

0
0

1
2
3
2

1
2

3
4

1
2

3
4

5
1

2
3

4
1

2
3

4
1

2
3

4
5

1
2

3


