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Abstract. In this paper, we are interested in the problem of predicting attributes
on the nodes in a social network. Most of the existing techniques addressing this
problem are offline learning techniques and are not suitable in situations where
massive data come in stream like social media. In this work, we use latent
factor models to predict unknown attributes of the nodes in a social network and
propose a method to incrementally update the prediction model on the arrivals
of new data. Experiments on a real social media dataset show that our method
is more rapid and can guarantee acceptable performances in comparison with
state-of-the-art non-incremental techniques.

1 Introduction and problem statement
With the explosion of social media on the Internet in recent years, mining social media

content has become more and more critical for many domains. One of the challenges of mining
social media is how to leverage relational information (e.g friendships, interactions between
social media users) and simultaneously attributes (e.g. users’ interests, textual or any other
additional information). Another challenge lies in the fact that these media provide vast and
continuous streams of data. Using offline learning techniques, we have to aggregate all the
data available from the past until the present. This approach is not suitable in this situation
because (1) as new data come, the size of the dataset grows, it get more and more expensive to
learn and to apply the model (2) this approach cannot capture the dynamic of the data stream:
old data and recent data are treated uniformly.

In this paper, we address both challenges by introducing an incremental learning method
for the task of predicting attributes of social actors in a social network. This problem has many
real world applications, for example to predict users’ interests or hobbies using social media.
We build a graph of interactions among the social media users and enrich the graph with a set
attributes on nodes. As the data (nodes, links) arrive as a permanent stream, we want to build
models to periodically predict unknown attributes on the nodes.

To formulate our problem, we adopt the social-attribute network (Yin et al. (2010)). A
social-attribute network (SAN) contains a social network Gs=(Vs, Es) where Vs is the set of
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nodes and Es is the set of edges. The social graph is augmented with a bipartite graph Ga =
(Vs ∪ Va, Ea), called the attribute graph, connecting the social nodes in Vs with attribute
nodes in Va. The edges in Es are social links and the edges in Ea (connecting social nodes and
attribute nodes) are attribute links. There are 2 types of attribute link between a social node i
and an attribute node k: a positive link if i has the attribute k; a negative link if i doesn’t have
k and in case we don’t know whether i has k or not, there is no link between i and k (missing
link). We are interested in the problem of predicting attributes of nodes (i.e the nature - positive
or negative - of missing links in the attribute graph Ga) in the context of incremental learning.
In this context, at each time step t, we have a snapshot G (t) of the SAN which represents all
data (nodes and links) available from the past until t. In comparison with the previous snapshot
G (t− 1), G (t) has new nodes and new links. The new nodes can be social nodes or attribute
nodes (in the experiments we only consider new social nodes due to limitation of the data set).
We denote by ∆G (t) the SAN constituted of the new links which have just been added at the
time step t. The SAN G (t) contains two components (sub-networks), the first component is
the snapshot G (t− 1), and the second component is ∆G (t). We formulate our incremental
learning problem as follows: assume that we have built a model Mt−1 to predict attributes of
nodes at the time step t − 1, our problem is to update the model Mt−1 with new data (nodes
and links in ∆G (t)) to predict unknown attributes of nodes at the time step t.

In the followings, we review latent factor models and matrix factorization in batch learning
(Section 2) and then propose an approach for incremental learning based on these techniques
(Section 3). We present some encouraging experimental results in Section 4. Finally in Sec-
tion 5 we conclude and point out some promising directions in future work.

2 Latent factor model and matrix factorization
As stated earlier, the learning approach proposed in this paper is inspired from latent fac-

tor models (LFM) (Bartholomew et al. (2011)), which have long been used in statistics and
machine learning. A LFM is a statistical model that represents each data instance by a set
of latent variables. Matrix factorization (MF) can be considered as a method of latent factor
modeling in which latent variables are continuous. The basic idea of MF is to decompose a
high dimensional data matrix into lower dimensional matrices.

Techniques of MF have also been extended to handle multiple matrices at a time. Singh and
Gordon (2008) introduced collective matrix factorization (CMF). CMF can deal with relational
data in which there are many types of entity and many types of relation between entities, each
type of relation is represented by a relational matrix. CMF tries to map entities into a common
latent space by factorizing simultaneously multiple relational matrices. In our problem setting,
we have two matrices : the adjacent matrix of the social network (denoted by S) and the
attribute matrix (denoted by A where Aik is a binary value indicating whether the attribute
link (i, k) is positive or negative). Using CMF, we minimize:

QCMF (U, P, G) =α
∑

(i, j)∈Es

(
Sij − uiuTj

)2
+

∑

(i, k)∈Ea

(
Aik − uipTk

)2

+ λ

(
ns∑

i=1

‖ui‖2 +

na∑

k=1

‖pk‖2
)

(1)
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where Es is the set of social links, Ea is the set of attribute links; U is the matrix constituted of
the latent vectors of all the social nodes and similarly, P is the matrix constituted of the latent
vectors of all the attribute nodes of G. The parameter α allows to adjust the relative importance
of the social network in the model. The third term is a regularization term to penalize complex
models with large magnitudes of latent vectors. λ is a regularization parameter.

Li and Yeung (2009) proposed another extension of MF, called relation regularized matrix
factorization (RRMF). RRMF simultaneously exploits the social graph and the attribute graph
by minimizing (with the same notations as in Equation 1):

QRRMF (U, P, G) =α
∑

(i, j)∈Es

Sij ‖ui − uj‖2 +
∑

(i, k)∈Ea

(
Aik − uipTk

)2

+ λ

(
ns∑

i=1

‖ui‖2 +

na∑

k=1

‖pk‖2
)

(2)

We can see that this is in fact the factorization of the attribute matrix A when adding regu-
larization term α

∑
(i, j)∈Es

Sij ‖ui − uj‖2. This term is called the relational regularization term

which allows to minimize the distances between connected social nodes in the latent space.
The RRMF approach assumes that connected social actors tend to have similar profiles.

3 Incremental learning with latent factor models
In the incremental learning context defined in Section 1, we need to learn a prediction

model (i.e the latent features of nodes) at each time step. The batch learning approach suggests
that we learn the latent features at each time step using the whole snapshot G (t)

U? (t) , P ? (t) = arg min
U, P

Q (U, P, G (t)) (3)

where Q is one of the two objective functions defined above (Equation 1 and Equation 2).
Different from the batch learning method, the incremental method learns a model only from
new data (i.e SAN ∆G (t)) when reusing the old model, i.e latent features of nodes calculated
in the previous time step. To do this, we minimize the following objective function:

Qinc (U, P, t) =Q (U, P, ∆G (t))

+µ


 ∑

i∈Vs(t−1)
‖ui − u?i (t− 1)‖2 +

∑

k∈Va(t−1)
‖pk − p?k (t− 1)‖2


 (4)

where Vs (t− 1) and Va (t− 1) are respectively the set of social nodes and the set of attribute
nodes in the previous time step; u?i (t− 1) and p?k (t− 1) are respectively the latent vectors of
the social node i and the attribute node k learned in the previous time step and µ is a parameter
of the model. This objective function consists of two terms. The first term is the objective
function of MF on the incremental graph ∆G (t). The second term is a regularization term for
minimizing the shifts of latent features of the same nodes between time steps. By minimizing
the two terms simultaneously, we learn latent features of nodes both from the new data and
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from the latent features of existing nodes of the previous time step. We can easily see that the
latent features of an existing node are updated if and only if there are new links connecting to
it. The parameter µ allows to tune the contribution of the previous model to the current model.

In terms of optimization, we adapt the Alternating Least Squared (Zhou et al. (2008))
algorithm to minimizeQ in Equation 3 for batch learning orQinc in Equation 4 for incremental
learning. The basic idea of this algorithm is to solve the least square problem with respect to
the latent features of one node at a time until convergence. The complexity of the algorithm
linearly depends on the number of squared terms in the objective function, which is the total
number of nodes and number of links in the SAN. In other words, the learning algorithm has
linear complexity with respect to the size of the data. In case of incremental learning, when
optimizing only on recent data (∆G (t)), we can gain a lot in terms of computational cost.

4 Experiments

4.1 Experimental setup
The dataset used in these experiments is BlogCatalog, collected and used by Tang and

Liu (2011). In BlogCatalog 1, a blogger can specify his connections with other bloggers. In
addition, when submitting a new blog, a blogger specifies the categories of the blog among
a set of pre-defined categories. A blogger’s interests can be inferred from the categories of
his blogs. The dataset contains only a small portions of the whole network: 10312 bloggers,
333983 connections between bloggers, 39 categories, and each blogger has on average 1.4
categories of interest. We can build a SAN out of this data set where bloggers are social actors
and categories are attributes. Since we don’t have a real data stream, we construct artificial
SAN snapshots from this static data set to test our incremental learning method. We build
SAN snapshots at 6 time steps in our experiment. We only consider adding new social nodes
at each time step (the set of 39 attribute nodes is fixed). We initially pick 50% of the total
social nodes and build the SAN snapshot G (0) from these nodes and all links (social links and
attribute links) that involve them. At each time step t ∈ {1, 2, 3, 4, 5}, we randomly take
10% of the total social nodes (only nodes which have not been taken yet). We add these social
nodes and all their social links to build a new snapshot G (t). About the attribute links, we
assume that the attributes of new nodes at t are unknown until the next time step t+ 1.

Our objective is to predict unknown attributes of nodes with our incremental methods (In-
cremental CMF, Incremental RRMF) at each time step. We compare our incremental learning
methods with the batch learning approach (i.e using the whole snapshot G (t) at each time step
t). Three batch learning methods are used to compare: batch learning with CMF, RRMF and
another state-of-the-art method called Social Dimension (SocialDim) (Tang and Liu (2011)).
The basic idea of this method is to transform the social network in to features of nodes using a
graph clustering algorithm (where each cluster, also called a called a social dimension, corre-
sponds to a feature) and then train a discriminative classifier (Support Vector Machine (Cortes
and Vapnik (1995))) using these features. It has been shown that the SocialDim outperforms
other well-known methods of classification in a network.

To measure the performances of the different prediction methods, we use Area Under ROC
Curve (AUC) (Bradley (1997)). At each time step, the AUC is computed from the prediction

1. http://www.blogcatalog.com/
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scores and the true labels of all missing links. We also measure the computational time of each
method to show empirical gain in complexity of our incremental method.

About the choices of parameters, we have observed that the performances of LFM methods
are relatively stable with changes of λ, α and µ in both batch learning and incremental learning.
We have set λ = 1.0, α = 1.0, µ = 100 for CMF and λ = 1.0, α = 1.0, µ = 10 for RRMF
to produce representative results for each methods in our experiment. The number of latent
factors is set to 50, at which CMF and RRMF attain their maximal stable performances.

4.2 Experiment results
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FIG. 1: Performance and learning time of incremental learning compared with batch learning

We perform 5 runs and plot the average AUC of each method in each time step in Figure 1a.
We observe that the incremental learning techniques cannot give better performances than
batch learning methods in all time steps. This is an expected observation: in this experimental
setting, the “data stream” is not real. However, both CMF and RRMF give almost the same
performance in batch learning and incremental learning (in all cases the difference is not more
than 1%). In other words, with LFM, we can incrementally learn the prediction model instead
of learning from scratch without any significant loss in performance. When comparing CMF
and RRMF, we see clearly that CMF is better. We can also see that the performances of our
incremental learning techniques are not too far from those of the reference method - SocialDim
(difference of 4% in the worst cases).

Figure 1b shows the learning time (in seconds) of each tested method. To be fair, all the
methods are implemented and executed in MATLAB on the same machine (CPU 2.5GHz and
4GB of RAM). The incremental learning techniques require to learn a model from the SAN
G (0) (without prediction) at the time step 0, while the batch learning techniques don’t need this
step. But in the subsequent time steps (1 to 5), the incremental techniques always have much
smaller learning time than that of the batch learning methods. In batch learning, the learning
time of CMF and RRMF increases rapidly after each time step. Although the learning time of
SocialDim increases less rapidly than that of CMF and RRMF, it is still very long compared to
our incremental methods.
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5 Conclusion
Motivated by the challenges of social media mining, we have proposed an incremental

learning method based on LFM. Two alternatives (CMF and RRMF) inspired from LFM have
been tested for the problem of incremental attribute prediction in a social network. Our learning
algorithm can achieve relatively good performance compared to the reference method based
on Social Dimension, a non-incremental classification method. In future work, we will test our
incremental approach on real data streams. We expect that our incremental learning method
can capture the dynamic of data stream and give better performances than batch learning. We
also consider possible extensions of our models to deal with more complex data in social
media, for example to consider other types of nodes and links in the SAN, to include attributes
on edges, to handle directed links, etc.
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Résumé
Dans ce travail, nous nous intéressons au problème de la prédiction d’attributs sur les

nœuds dans un réseau social. La plupart des techniques sont hors ligne et ne sont pas adaptées
à des situations où les données arrivent massivement en flux comme dans le cas des médias
sociaux. Dans ce travail, nous utilisons les modèles de variables latentes pour prédire les at-
tributs inconnus des nœuds dans un réseau social et proposer une méthode pour mettre à jour
incrémentalement le modèle avec des nouvelles données. Des expérimentations sur un jeu de
données issues des médias sociaux montrent que notre méthode est moins coûteuse en temps
de calcul et peut garantir des performances acceptables en comparaison avec les techniques
non-incrémentales de l’état de l’art.
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