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Abstract. We introduce a measure of ultrametricity for dissimilarity spaces and
examine transformations of dissimilarities that impact this measure. Then, we
study the influence of ultrametricity on the behavior of two classes of data min-
ing algorithms (kNN classification and PAM clustering) applied on dissimilarity
spaces. We show that there is an inverse variation between ultrametricity and
performance of classifiers. For clustering, increased ultrametricity generate clus-
terings with better separation. Lowering ultrametricity produce more compact
clusters.

1 Introduction

Ultrametrics occur in the study of agglomerative hierarchical clustering algorithms, phylo-
genetic trees, p-adic numbers, certain physical systems, etc.

Our goal is to evaluate the degree of ultrametricity of dissimilarity spaces and to study the
impact of the degree of ultrametricity on performance of classification and clustering algo-
rithms.

Measuring ultrametricity of metric spaces has preoccupied a number of researchers (for
example, in (Rammal et al., 1985)); however, the proposed measures are usable for the spe-
cial case of metrics and are linked to the subdominant ultrametric attached to a metric which
requires computing a single-link clustering or a minimal spanning tree. We propose an alter-
native measure referred to as the weak ultrametricity that can be applied to the more general
case of dissimilarity spaces.

A dissimilarity space is a pair (S, d), where S is a set and d : S × S −→ R is a function
such that d(x, y) > 0, d(x, x) = 0, and d(x, y) = d(y, x) for x, y ∈ S. We assume that all
dissimilarity spaces considered are finite.

A triangle in (S, d) is a triple (x, y, z) ∈ S3. To simplify the notation, we denote t =
(x, y, z) by xyz.

The mapping d is a quasi-metric if it is a dissimilarity and it satisfies the triangular inequal-
ity d(x, y) 6 d(x, z) + d(z, y) for x, y, z ∈ S. In addition, if d(x, y) = 0 implies x = y, then
d is a metric.
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An quasi-ultrametric is a dissimilarity d : S × S −→ R>0 that satisfies the inequality
d(x, y) 6 max{d(x, z), d(z, y)} for x, y, z ∈ S. If, in addition, d(x, y) = 0 implies x = y,
then d is an ultrametric.

In Section 2 we introduce a measure of ultrametricity for dissimilarity spaces and a weaker
variant of this measure that is better from a computational point of view. Then, we examine
transformations of dissimilarities that affect ultrametricity. The influence of ultrametricity of
dissimilarities on the performance of classifiers is examined in Section 2 using the k-nearest
neighbors classifiers. Section 4 is dedicated to the study of the impact of ultrametricity on
cluster compactness and separation.

2 Evaluating Ultrametricity in Dissimilarity Spaces
Let r be a non-negative number and let Dr(S) be the set of dissimilarities defined on S

that satisfy the inequality d(x, y)r 6 d(x, z)r + d(z, y)r for x, y, z ∈ S. Note that every
dissimilarity belongs to the set D0; a dissimilarity in D1 is a semimetric.

Let D∞ =
⋂

r>0Dr. If d ∈ D∞, then d is an ultrametric. Indeed, let d ∈ D∞ and

assume that d(x, y) > d(x, z) > d(z, y). Then, d(x, y) 6 d(x, z)
(
1 +

(
d(y,z)
d(x,z)

)r) 1
r

for

every r > 0. Since limr→∞ d(x, z)
(
1 +

(
d(y,z)
d(x,z)

)r) 1
r

= d(x, z), it follows that d(x, y) 6
d(x, z) = max{d(x, z), d(z, y) for x, y, z ∈ S, which allows us to conclude that d is an
ultrametric.

It is easy to verify that r 6 s implies (d(x, z)r + d(z, y)r)
1
r > (d(x, z)s + d(z, y)s)

1
s

(see (Simovici and Djeraba, 2014), Lemma 6.15). Thus, if r 6 s we have the inequality
Ds ⊂ Dr.

Let (S, d) be a dissimilarity space and let t = xyz be a triangle. Following Lerman’s
notation (Lerman, 1981), we write Sd(t) = d(x, y),Md(t) = d(x, z), and Ld(t) = d(y, z), if
d(x, y) > d(x, z) > d(y, z).

Definition 2.1. Let (S, d) be a dissimilarity space and let t = xyz ∈ S3 be a triangle.
The ultrametricity of t is the number ud(t) defined by

ud(t) = max{r > 0 | Sd(t)
r 6 Md(t)

r + Ld(t)
r}.

If d ∈ Dp, we have p 6 ud(t) for every t ∈ S3.
The notion of weak ultrametricity that we are about to introduce has some computational

advantages over the notion of ultrametricity, especially from the point of view of handling
transformations of metrics.

The weak ultrametricity of the triangle t, wd(t), is given by

wd(t) =





1

log2
Sd(t)

Md(t)

if Sd(t) > Md(t)

∞ if Sd(t) = Md(t).

If wd(t) =∞, then t is an ultrametric triple.
The weak ultrametricity of the dissimilarity space (S, d) is the number w(S, d) defined by

w(S, d) = median{wd(t) | t ∈ S3}.
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The definition of w(S, d) eliminates the influence of triangles whose ultrametricity is an
outlier, and gives a better picture of the global ultrametric property of (S, d).

For a triangle t we have

0 6 Sd(t)−Md(t) =
(
2

1
wd(t) − 1

)
Md(t) 6

(
2

1
w(S,d) − 1

)
Md(t)

Thus, if wd(t) is sufficiently large, the triangle t is almost isosceles. For example, if wd(t) = 5,
the difference between the length of longest side Sd(t) and the median side Md(t) is less than
15%.

For every triangle t ∈ S3 in a dissimilarity space we have ud(t) 6 wd(t). Indeed, since
Sd(t)

ud(t) 6 Md(t)
ud(t) + Ld(t)

ud(t) we have Sd(t)
ud(t) 6 2Md(t)

ud(t), which is equivalent
to ud(t) 6 wd(t).

Next we discuss dissimilarity transformations that impact the ultrametricity of dissimilari-
ties.

Theorem 2.2. Let (S, d) be a dissimilarity space and let f : R>0 −→ R>0 be a strictly
increasing function on R>0.

If the function g : R>0 −→ R>0 given by

g(a) =

{
f(a)
a if a > 0,

0 if a = 0

is strictly decreasing, then the function e : S × S −→ R>0 defined by e(x, y) = f(d(x, y))
for x, y ∈ S is a dissimilarity and wd(t) 6 we(t) for every triangle t ∈ S3.

Proof. It is immediate that e(x, y) = e(y, x) and e(x, x) = 0 for x, y ∈ S. Let t = xyz ∈
S3 be a triangle. Since Sd(t) > Md(t) and g is strictly decreasing, g(Sd(t)) 6 g(Md(t)),
which implies f(Sd(t))

Sd(t)
6 f(Md(t))

Md(t)
. Since f is a strictly increasing function we have Se(t) =

f(Sd(t)) and Me(t) = f(Md(t)). This allows us to write:

Se(t)

Me(t)
=

f(Sd(t))

f(Md(t))
6 Sd(t)

Md(t)
.

Therefore,

wd(t) =
1

log2
Sd(t)
Md(t)

6 1

log2
Se(t)
Me(t)

= we(t).

Example 2.3. Let (S, d) be a dissimilarity space and let e be the dissimilarity defined by
e(x, y) = d(x, y)r, where 0 < r < 1. If f(a) = ar, then f is strictly increasing and the
function g : R>0 −→ R>0 given by

g(a) =

{
f(a)
a if a > 0,

0 if a = 0
=

{
ar−1 if a > 0,

0 if a = 0

is strictly decreasing. Therefore, the weak ultrametricity we(t) is greater than wd(t), where
e(x, y) = (d(x, y))r for x, y ∈ S.
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Example 2.4. Let f : R>0 −→ R>0 be defined by f(a) = a
a+1 . It is easy to see that f is

strictly increasing on R>0 and

g(a) =

{
1

1+a if a > 0,

0 if a = 0

is strictly decreasing on the same set. Therefore, the weak ultrametricity of a triangle increases
when d is replaced by e given by

e(x, y) =
d(x, y)

1 + d(x, y)

for x, y ∈ S.

Example 2.5. The Schoenberg transform of a dissimilarity d described in (Deza and Laurent,
1997) is the dissimilarity e : S2 −→ R>0 defined by

e(x, y) = 1− e−kd(x,y)

for x, y ∈ S. Let f : R>0 −→ R> be the function f(a) = 1 − e−ka that is used in this
transformation. It is immediate that f is a strictly increasing function. For a > 0 we have
g(a) = 1−e−ka

a , which allows us to write

g′(a) =
e−ka(ka+ 1)− 1

a2

for a > 0. Taking into account the obvious inequality ka+ 1 < eka for k > 0, it follows that
the function g is strictly decreasing. Thus, the weak ultrametricity of a triangle relative to the
Schoenberg transform is greater than the weak ultrametricity under the original dissimilarity.

3 Classification and Ultrametricity
The k-nearest neighbors algorithm (kNN) is a classification method that is memory-based

and does not require a model to fit. The classification is decided according to a simple majority
decision among the most similar training set samples.

We show that the performance of kNN applied to a dissimilarity space (S, d) degrades
with the increase of the ultrametricity of d. This happens because the increase of ultrametricity
among the elements of S promotes the equalization of distances.

We begin with a dissimilarity space (S, d) and we obtain a new dissimilarity d′ = f(d),
where f is one of the transformations examined in Section 2. Algorithm 1 encapsulates the
above process. It runs kNNwith t-fold cross-validation and computes the confusion matrix
generated for each fold as well as the cumulative classification error of the transformed space.

We limit the precision of the transformed dissimilarity d′ taking into account, as ob-
served in (Murtagh et al., 2008) that ultrametricity can decrease with the increase in preci-
sion. Limiting the precision of d′ to a few decimal digits promotes the equalization of those
distances. We used in our experiments the data sets Fisheriris and ionosphere available from
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Algorithm 1: Runs kNN with transformed distance function
Input: A metric or dissimilarity space S = (M,d), the number of nearest neighbors k,

the number of folds t and a function f , such that f(d) = d′ and u <= u′ where
u and u′ are the ultrametricities of S and S′ = (M,d′), respectively.

Output: The cumulative classification error of the transformed space S′

d
′ ← f(d), limited to some decimal precision

partitionM in t subsamples
for i=1 tot do

training = partition(i).training
test = partition(i).test
testSize(i) = size(test)
kNN(training, test, k, d′)
err(i) = #misclassified objects

return cerr = sum(err)/sum(testsSize)

Diss. Iris Ionosphere Ovarian
cancer

k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 k = 3 k = 5 k = 7

d 0.1033 0.0467 0.0427 0.3860 0.3701 0.3852 0.1403 0.1394 0.1431
d0.1 0.1187 0.0753 0.0567 0.3875 0.4097 0.3897 0.1454 0.1431 0.1477
d0.01 0.2700 0.2900 0.3000 0.5211 0.5239 0.5365 0.3574 0.3181 0.3000

TAB. 1: Average of 10 computations of the classification error produced by kNN using strati-
fied t-fold cross-validation, for different values of k and t = 10.

https://archive.ics.uci.edu/ml/data sets/ and data set ovarian cancer ob-
tained from the FDA-NCI Clinical Proteomics Program Databank
(http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp).

Our experiments considered a initial Euclidean space (S, d) where S corresponds to one
of the data sets described above and d to the Euclidean distance. We first tested our method
on the original space and compared the results to the results generated by the increase of
ultrametricity of dissimilarity d′ = f(d), where f(a) = ar for a > 0. We used kNN with both
t-fold cross-validation and with stratified t-fold cross-validation (where each fold has roughly
equal size and roughly the same class proportions as in the entire data set). The transformed
distances were limited to 2 decimal digit precision.

The classification error obtained is consistently higher for the case of the transformed space
(S, d′), in both validation scenarios. In Table 2 we show the results for three values of k (the
number of neighbors) in stratified 10-fold validation. Similar results are obtained for 5 folds in
both validation scenarios.
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4 The Impact of Ultrametricity on Cluster Compactness and
Separation

Clustering validation evaluates and assesses the goodness of the results of a clustering
algorithm (Maulik and Bandyopadhyay, 2002). We used internal validation measures that rely
on information in the data (Tang et al., 2005), namely and compactness and separation (Tang
et al., 2005; Zhao and Karypis, 2002).

Compactness measures quantify how well-related the objects in a cluster are. It provides
information about the cohesion of objects in an individual cluster with respect to the other ob-
jects outside the cluster. A group of measures evaluate cluster compactness based on variance
where lower values indicate better compactness. Other measures are based on distance, such
as maximum or average pairwise distance, and maximum or average center-based distance.

Separation is a measure of distinctiveness between a cluster and the rest of the world. The
pairwise distances between cluster centers or the pairwise minimum distances between objects
in different clusters are often used as measures of separation.

The compactness of each cluster was evaluated using the average dissimilarity between
the observations in the cluster and the medoid of the cluster. Separation was computed using
the minimal dissimilarity between an observation of the cluster and an observation of another
cluster.

We investigate the impact of ultrametricity on compactness and separation of clusters by
using the Partition Around Medoids (PAM) algorithm (Kaufman and Rousseeuw, 1990) to
cluster objects originally in the Euclidean Space and later in a transformed dissimilarity space
with lower or higher ultrametricity.

Experiments show that a transformation on the distance matrix that decreases the ultra-
metricity of the original Euclidean space can actually improve compactness but also decrease
separation of the clusters generated by PAM. However, the compactness improves at a faster
ratio than the decrease in separation. We also observed that the increase of ultrametricity pro-
duces the reverse effect, degrading compactness and increasing separation, at different ratios.
In this case, compactness decreases in a faster ratio than the increase in separation.

Let (S, d) be a dissimilarity space, (S, d′) be the transformed dissimilarity space, where
d′ = f(d) is obtained by applying one of the transformations described in Section 2 and let u
and u′ be the weak ultrametricities of these two dissimilarity spaces, respectively.

The increase of ultrametricity from (S, d) to (S, d′) promotes the equalization of dissimi-
larity values. In the extreme case, we have an ultrametric space where the pairwise distances
involved in all triplets of points form an equilateral or isosceles triangle. To explore how the
equalization (or the reverse process) may affect clustering quality, a better study of the ef-
fects of increased (or decreased) ultrametricity on the results generated by a widely known and
robust clustering algorithm was performed.

In order to study the impact of ultrametricity on cluster compactness and separation, we
have implemented an algorithm that runs PAM on the original and transformed spaces, and
computes those measure for each cluster from S and S′.

Our experiments considered a initial Euclidean space (S, d) where S corresponds to a set
of objects and d to the Minkowski distance with exponent 2. To obtain a valid comparison of
compactness and separation, the clusters obtained from a specific data set S must contain the
same elements in the original and transformed spaces.
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Dissimilarities dx where x > 1 tend to decrease the ultrametricity of the original space,
whereas dissimilarities where 0 < x < 1 tend to increase ultrametricity.

Current existing clustering validation measures and criteria can be affected by various data
characteristics (Liu et al., 2010). For instance, data with variable density is challenging for sev-
eral clustering algorithms. It is known that k-means suffers from an uniformizing effect which
tends to divide objects into relatively equal sizes (Xiong et al., 2009). Likewise, k-means and
PAM do not have a good performance when dealing with skewed distribution data sets where
clusters have unequal sizes. To determine the impact of ultrametricity in the presence of any
of those characteristics, experiments were carried considering 3 different data aspects: good
separation, density, and skewed distributions in three synthetic data sets named WellSeparated,
DifferentDensity and SkewDistribution, respectively.

Figure 1 shows the synthetic data that was generated for each aspect. Each data set contains
300 objects.

Tables 2 shows the results for data sets WellSeparated, DifferentDensity and SkewDistri-
bution, respectively. The measure (compactness or separation) ratio is computed dividing the
transformed space measure by the original space measure. The average measure ratio com-
puted for the 3 clusters is presented in each table.

Note that the average measure ratio is less than one for spaces with lower ultrametric-
ity (obtained with dissimilarities d5 and d10). In this case, the average compactness ratio is
also lower than the average separation ratio, showing that the transformations generated intra-
cluster dissimilarities that shrunk more than the inter-cluster ones, relatively to the original dis-
similarities. In spaces with higher ultrametricity (obtained with dissimilarities d0.1 and d0.01),
the average measure ratio is higher than one. The average compactness ratio is also higher
than the average separation ratio, showing that the transformations generated intra-cluster dis-
similarities that expanded more than the inter-cluster ones. This explain the equalization effect
obtained with the increase in ultrametricity.

(a) Well Separated (b) Different Density (c) Skewed Distribution

FIG. 1: Synthetic data containing 3 different data aspects: 1a: good separation, 1b: different
density and 1c: skewed distributions

Figures 2a, 2b and 2c show the relation between compactness a separation ratios for each
data set.

In Figure 2 we show the relationship between compactness and separation ratios for the
three synthetic data sets and for the Fisheriris data set which exhibit similar variation patterns.

As previously mentioned, data with characteristics such as different density and different
cluster sizes might impose a challenge for several clustering algorithms.
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Diss. Compactness Compactness Separation Separation
Avg. Ratio Avg. Avg. Ratio Avg.

d 0.159852 0.462208
d10 6.782346E-008 0.00000036 2.113074E-006 0.000004433
d5 0.000150339 0.00082451 0.002830298 0.006041492
d0.1 0.835946 5.493823933 0.955770 2.073671831
d0.01 0.973616 6.433067888 0.995943 2.161429967

Results for a data set with well-separated clusters
Diss. Compactness Compactness Separation Separation

Avg. Ratio Avg. Avg. Ratio Avg.
d 0.226611 0.883006
d10 0.000000299 1.225126E-006 0.0085821266 0.0067414224
d5 0.000414 0.001758 0.120677 0.101145
d0.1 0.862157 3.829475 1.019217 1.247117
d0.01 0.968235 4.302930 1.002328 1.234965

Results for a data set with clusters with varied densities
Diss. Compactness Compactness Separation Separation

Avg. Ratio Avg. Avg. Ratio Avg.
d 0.152911 1.088650
d10 5.001356E-005 0.0001674944 0.0202263733 0.0185757406
d5 0.001707 0.005744 0.240466 0.220866
d0.1 0.815746 7.502117 1.042825 0.957924
d0.01 0.966675 9.123531 1.004683 0.922859

Results for a data set with skewed distributions.
Diss. Compactness Compactness Separation Separation

Avg. Ratio Avg. Avg. Ratio Avg.
d 2.564313e-01 2.841621e-01
d10 4.495584e-07 1.753134e-06 1.171608e-05 4.123026e-05
d5 7.628527e-04 2.974881e-03 4.583216e-03 1.612888e-02
d0.1 8.664974e-01 3.379062e+00 8.715969e-01 3.067252e+00
d0.01 9.630195e-01 3.755467e+00 9.858841e-01 3.469442e+00

Results for the Fisheriris data set.

TAB. 2: Cluster compactness and separation using PAM on three synthetic data sets and Fish-
eriris. dissimilarities. Both ratio averages are computed relative to the data set cluster com-
pactness and separation values given by the original dissimilarity d.
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(a) WellSeparated Data Set (b) DifferentDensity Data Set

(c) SkewDistr Data Set (d) Fisheriris Data Set

FIG. 2: Relation between Compactness and Separation Ratios for three synthetic data set and
for the Fisheriris data set

We show a scenario where PAM, when applied to the original Euclidean space, does not
perform well. Nevertheless, we are able to improve the PAM’s results by applying a transfor-
mation that decreases the ultrametricity of the original space and running PAM on the trans-
formed space.

Consider the data set presented in Figure 3a which was synthetically generated in an Eu-
clidean Space with pairwise metric d by three normal distributions with similar standard de-
viation but different densities. It has 300 points in total, with the densest group including 200
points and the other two containing 75 and 25 points.

Note that the somewhat sparse groups are also located very close to each other. Different
symbols are used to identify the three distinct distributions. PAM’s objective function tries to
minimize the sum of the dissimilarities of all objects to their nearest medoid. However, it may
fail to partition the data into the original distributions when dealing with different density data
since the split of the densest cluster may occur. In our example, PAM does exactly that and
also combines the two sparse clusters that are not well separated. Notice that unlike k-means
(which also does not perform well in these scenarios but eventually can find the right partition
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due to the randomness on the selection of the centroids), PAM will most likely fails due to the
determinism of its BUILD and SWAP steps combined and the choice of the objective function.

To explore the positive effect of increased intra-cluster compactness generated by new
spaces with lower ultrametricity on data containing those characteristics, we applied the same
transformations with positive integer exponents to the original Euclidean distance matrix ob-
tained from d. Results show significant improvement of the clustering. Figure 3b shows the
result of applying PAM to cluster the synthetic data with dissimilarity d. Note that the clus-
tering result does not correspond to a partition resembling the distributions that were used to
generate the data. Figures 3d and 3c show that PAM also fails to provide a good partition
with dissimilarities d 0.1 and d 0.01 since the increase in ultrametricity promotes equalization
of dissimilarities which may degrade even more the results. Note however that the partitions
obtained by PAM using the dissimilarities d5 and d10 form similar clusters to the ones gen-
erated by the original distributions. Indeed, the increase in compactness helps PAM to create
boundaries that are compliant with the original normal distributions.

(a) Synthetic Data (b) d (c) d 0.01

(d) d 0.1 (e) d 5 (f) d 10

FIG. 3: 3a shows the synthetic data generated from distributions with different density. 3b to
3f show the results of PAM using Euclidean distance d and other dissimilarities obtained by
transformations on d.

Table 3 shows the measures and ratios for this data set. Figure 4 shows the relationship
between compactness and separation ratios.

5 Conclusions and Further Work

We examined the influence of ultrametricity of dissimilarity spaces regarding classification
and clustering.
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Diss. Compactness Compactness Separation Separation
Avg. Ratio Avg. Avg. Ratio Avg.

d 0.138692 0.460486
d10 1.295368e-09 9.339889e-09 0.011426 0.024814
d5 2.868980e-05 2.068598e-04 0.104837 0.227665
d0.1 0.842801 6.076787 0.816082 1.772218
d0.01 0.974571 7.026878 0.978284 2.124458

TAB. 3: Data set comprising clusters with different density.

FIG. 4: Relation between Compactness and Separation Ratios for the test data set

We have shown that there is an inverse variation between ultrametricity and the perfor-
mance of classifiers. The increase of such measure, obtained by transformations applied to
the original space, promotes the equalization of distances. This equalization raises the level of
uncertainty during the classification process and degrades the quality of the results generated
by classifiers.

For clustering, increased ultrametricity generates clusterings with better separation. How-
ever, it also decreases compactness faster than the increase in separation. Lowering ultra-
metricity produces clusters that are more compact but not as well separated as in the original
space. In this case, compactness grows at a faster ratio than the decrease in separation.

There are numerous applications that can benefit from this study. For example, changing
the ultrametricity of the original space may help finding patterns in data that do not conform
to the expected behavior, in a classical example of anomaly detection. The impact of ul-
trametricity on various hierarchical clustering algorithms also seems a promising subject of
investigation.
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Résumé
Nous introduisons une mesure d’ultramétricité pour les dissimilaritées et examinons les

transformations des dissimilaritées et leurs impact sur cette mesure. Ensuite, nous étudions
l’influence de l’ultramétricité sur la comportement de deux classes d’algorithmes d’exploration
de données (le kNN algorithme de classification et l’algorithme de regroupement PAM) appli-
qués sur les espaces de dissimilarité. On montre qu’il existe une variation inverse entre ultramé-
tricité et la performance des classificateurs. Pour les clusters, une augmentation d’ultramétricité
genere regroupements avec une meilleure séparation. Une diminution de la ultramétricité pro-
duit groupes plus compacts.
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