
An Approach for Alert Raising
in Real-Time Data Warehouses

Maximiliano Ariel López∗, Sergi Nadal∗∗,
Mahfoud Djedaini∗∗∗, Patrick Marcel∗∗∗, Verónika Peralta∗∗∗, Pedro Furtado∗∗∗∗

∗École Centrale Paris, maxilopez@economicas.uba.ar,
∗∗Universitat Politècnica de Catalunya, snadal@essi.upc.edu
∗∗∗Université de Tours, firstname.lastname@univ-tours.fr

∗∗∗∗University of Coimbra, pnf@dei.uc.pt

Abstract. This work proposes an approach for alert raising within a real-time
data warehouse environment. It is based on the calculation of confidence inter-
vals for measures from historical facts. As new facts arrive to the data warehouse
on a real-time basis, they are systematically compared with their appropriate
confidence intervals and alerts are raised when anomalies are detected. The in-
terest of this approach is illustrated using the particular real world use case of
technical analysis of stock data.

1 Introduction

Traditional data warehousing architectures assume offline periods in order to run the costly
ETL processes that move and transform data coming from operational sources. Currently,
many organisations have the requirement of analysing their information in a real-time manner.
For instance, in the stock markets domain, technical analysis allows modelling market be-
haviour and predicting tendencies. Monitoring markets and quickly detecting deviations from
the expected behaviour allow analysts to face abrupt changes. Other domains where real-time
analysis is desirable include energy production, traffic and network monitoring.

In most cases, the aforementioned requirement cannot be satisfied with the classic data
warehouse and ETL architectures. To enable near real-time analysis based on the most re-
cent information, data warehouse architectures have been extended or adapted (Ferreira and
Furtado, 2013; Ferreira et al., 2013; Waas et al., 2013; Jörg and Dessloch, 2009; Santos and
Bernardino, 2008). In such systems, how data is loaded and the frequency in which this pro-
cess is executed change. In (Ferreira and Furtado, 2013), an integrated architecture is proposed,
which implements a real-time data warehouse without data duplication. It is composed of three
main components: the Dynamic Data Warehouse (D-DW), the Static Data Warehouse (S-DW)
and the Merger, with additional components providing real-time ETL. The main idea is to load
new data into the D-DW, an in-memory database that holds the most recent information and
provides fast integration. On the other side, the largest volume of historical data is stored in
the S-DW. Integration between D-DW and S-DW is done through classical offline procedures.
After this integration is done, the D-DW is emptied. Queries are handled by the Merger com-

- 145 -



An Approach for Alert Raising in Real-Time Data Warehouses

ponent which checks whether they have to be dispatched to the D-DW, S-DW or both. In the
latter case, it also combines the results of both components into a final answer.

In this paper, we present an approach for alert raising in a real-time data warehouse that
assumes the architecture proposed by (Ferreira and Furtado, 2013). The key idea involves
leveraging user traces (past queries recorded in a query log) to build an in-memory summary
of the S-DW, and then checking this summary against the data in the D-DW to raise alerts.
More precisely, we assume that user traces express sets of facts that need to be monitored.
In an offline phase, for each of these queries, we construct an in-memory structure (called
baseline from now onwards) recording a confidence interval for the facts contributing to each
cell (i.e., aggregate) of the query result over the S-DW. Confidence intervals are built using
the bootstrap method (Efron and Tibshirani, 1986). This method is particularly well adapted
to a real-time context, in the sense that it allows estimating population parameters based on
a sample. In our case, the unknown population is linked to the complete answer of the query
(not yet known since new data arrives continuously in the D-DW), and the sample is the current
answer to this query. In the online phase of our approach, new data loaded into the D-DW are
compared to the appropriate baselines. This comparison is used to raise alerts.

If the main idea of our anomaly detection approach is quite general, it is particularly well
adapted to a data warehousing context, for the following reasons. Firstly, our approach lever-
ages a specific real-time data warehouse architecture. Secondly, it is analyst-tailored in the
sense that anomalies are checked using an analyst navigation history. Finally, it uses a speci-
ficity of the multidimensional model since baselines are basically results of multidimensional
queries, recording at a particular granularity level confidence intervals for primary facts.

The outline of the paper is the following. Next section motivates the approach with an
example based on a prototype data warehouse storing stock exchange market data that we
implemented. Section 3 gives basics definitions for the formal description of the approach
exposed in Section 4. Results of our experiments are presented in Section 5 while Section 6
discusses related work. Finally, Section 7 concludes and draws perspectives.

2 Motivating Example
Our approach is inspired in technical analysis of stock exchange markets due to its dynamic

nature. It is worth mentioning that our aim is not to provide a replacement to other adapted
solutions like high-frequency trading systems, but to illustrate and test the dynamics, features
and problems of a real-time data warehouse. We think that this case poses an interesting
scenario of streaming data with a remarkable volume.

Therefore, we consider a data warehouse allowing the analysis of security trading trans-
actions (i.e. quotes). The schema of the data warehouse is depicted in Figure 1 using DFM
notation (Golfarelli and Rizzi, 2009).

Quotes are associated with the following dimensions: markets (geographical information),
securities (issuing organization, currencies, type of activity), date and time information. As far
as measures are concerned, five items are considered: open (i.e. the price at the beginning of
the period), high (i.e. the maximum price seen), low (i.e. the minimum price seen), close (i.e.
the price at the end of the period) and volume (i.e. the quantity of stock traded so far).

We take into account a business analyst interested in monitoring some companies and mar-
kets. Let us suppose the user devises queries for answering the following requirements: Euro-

- 146 -



M. López et al.

FIG. 1 – Data warehouse schema for the illustrative example

pean Health-Care Companies (Q1), US Health-Care Companies (Q2), Semiconductors firms
in NASDAQ by Year (Q3), and Water Supply firms by Year (Q4). These pieces of informa-
tion would appear in a query log, as depicted in the following table, using MDX notation (for
illustrative purposes we assume only the measure close is used in each query):

Query Group By Set Filters

Q1
[Security.Geography].[Organisation]
[Market.Geography].[Market Name]

[Security.Geography].[Region].[Europe]
[Security.Activity].[Sector].[Health Care]

Q2
[Security.Geography].[Organisation]
[Market.Geography].[Market Name]

[Security.Activity].[Sector].[Health Care]
[Security.Geography].[Country].[USA]

Q3
[Security.Activity].[Security Symbol]
[Date.DateMonthYear].[Year]

[Market.Geography].[Market Name].[NASDAQ]
[Sector.Activity].[Industry].[Semiconductors]

Q4
[Security.Activity].[Security Symbol]
[Date.DateMonthYear].[Year] [Sector.Activity].[Industry].[Water Supply]

In order to check for abnormal values and raise alerts, we first build baselines of historical
data and then, when fresh data arrive, we compare them to the baselines. By replaying the
queries against the S-DW (the historical component), we compute the baseline related to each
query, i.e. confidence intervals for the values of measures of primary facts. For instance, Q1’s
baseline would store, for each combination of European Healthcare organisations and market
names, the confidence interval corresponding to each measure of the concerned primary fact.
A sample of this baseline for close measure might be:

[Market.Geography].[Market Name].
[NASDAQ]

[Security.Geography].[Organisation].[Shire plc] [143.87 - 166.317]
[Security.Geography].[Organisation].[Grifols, S.A.] [29.414 - 31.765]

- 147 -



An Approach for Alert Raising in Real-Time Data Warehouses

As new data arrive into the D-DW (the real-time component), the system automatically
checks individual facts against the in-memory baselines. The following fact inserted into D-
DW might then trigger an alert as its closing price lies outside of the confidence interval:

date_id minute_id market_name security_symbol open high low close volume
... ... NASDAQ Shire plc 149.10 149.10 142.50 143.70 206026

3 Preliminaries
In this section, we introduce the theoretical basis that later will be used in our approach.

Firstly, in Section 3.1 we introduce basic definitions such as multidimensional schema, queries
and baselines, the in-memory data structure whose goal is to provide an overview of the con-
fidence intervals in the data warehouse. In Section 3.2 we briefly present bootstrapping, a
statistical method based on data re-sampling that can provide estimations of the sampling dis-
tribution. The key part is that, this estimation is akin to the real distribution of the entire
population.

3.1 Multidimensional Schema, Queries, and Baselines
We now introduce our formal framework. To keep the formalism simple, we consider cubes

under a ROLAP perspective, described by a star schema (Kimball, 1996).
We consider the classic definition of hierarchies, where a hierarchy hi is a set Lev(hi) =

{l0, . . . , ld} of levels together with a roll-up total order �hi
of Lev(hi).

A multidimensional schema (or, briefly, a schema) is a tripleM = 〈A,H,M〉 where:
– A = {l1, . . . , lm} is a finite set of levels, whose domains are assumed pairwise disjoint,
– H = {h1, . . . , hn} is a finite set of hierarchies, such that each level li of A belongs to

al least one hierarchy of H .
– M = {m1, . . . ,mp} is a finite set of measure attributes.
Given a schema M = 〈A,H, M〉, let g ∈ Lev(h1) × . . . × Lev(hn) be a group-by

set of M. In what follows we will use the classical partial order on group by sets, defined
by: g � g′, if g = 〈l1, . . . , ln〉, g′ = 〈l′1, . . . , l′n〉 and ∀i ∈ [1, n] it is li �hi

l′i. We note
g0 the most specific (finest) group by set. A coordinate coordi in a hierarchy hi is a pair
〈l,m〉 where l is a level and m is a member of l. Given a group by set g = 〈l1, . . . , ln〉, let
Dom(g) = Dom(l1)×. . .×Dom(ln) be the set of all combinations of members at granularity
g. An element of Dom(g) is called a reference. For this schema, a fact of granularity g is a
pair 〈ref,meas〉, where ref is a reference and meas is a set of measure values. The facts of
granularity g0 are called primary facts.

Example 3.1 In the example of Section 2, the schemaM = 〈A,H, M〉 is:
– A = {MarketName,City, Country, Currency,Date, . . .}
– H = {({Y ear,Month/Y ear,Date},�Date), . . .}
– M = {open, high, close, low, volume}
The finest group by set ofM is g0 = {Minute,Date,MarketName, SecuritySymbol}.

A coordinate is (MarketName,NASDAQ). A reference is {Minute,Date,MarketName,
SecuritySymbol}.

- 148 -



M. López et al.

A query over schemaM = 〈A,H,M〉 is a triple q = 〈G,P,Meas〉 where:

1. G is the query group-by set;

2. P = {p1, . . . , pn} is a set of Boolean predicates, one for each hierarchy, whose con-
junction defines the selection predicate for q; they are of the form pi = (li ∈ Vi), with
li a level and Vi a set of members.

3. Meas ⊆M is the measure set whose values are returned by q.

The answer to a query q = 〈G,P,Meas〉 over a schemaM the a set of facts of granularity
G whose references are in V1 × . . . × Vn. A log L is a finite set of queries, noted L =
{q1, . . . , qp}. A monitoring query set MQ = 〈q1, . . . , qk〉 is a subset of L.

In our approach, we assume the existence of two data cubes DRT and DHIST , namely
the real-time component and the historical component, that both share the same schema M.
Information in DRT is stored in the D-DW component, as described in (Ferreira and Furtado,
2013) it only contains the most recent data. On the other hand DHIST is stored in the S-DW
component, which contains all historical data.

In what follows, for a given query q, we use q(DRT ) (resp. q(DHIST )) to denote the set
of facts being the answer to query q over DRT (resp. over DHIST ). The log L considered in
our case only applies to the queries over the historical cube DHIST . Finally, we assume the
existence of a set of baselines B = {b1, . . . , bn} to record properties of measure values for a
given granularity level.

Definition 3.1 (Baseline) Given a schemaM = 〈A,H,M〉 and a query q = 〈G,P,Meas〉
overM, with P = {(l1 ∈ V1), . . . , (ln ∈ Vn)}, a baseline for q overM is a set of facts of
granularity G, each of the form 〈ref, cell〉, where ref is a reference of V1 × . . . × Vn and
cell is a set of triplets of the form (meas, θ̂1, θ̂2), meas being a measure of Meas and (θ̂1, θ̂2)
being the confidence interval for the measure.

Example 3.2 Retaking the previous example, the query Q1 is represented as (forgetting about
the All levels):

– G = {Organisation,MarketName}
– P = {(Region ∈ {Europe}), (Sector ∈ {HealthCare})}
– Meas = {close}
After the inclusion of Q1 in MQ, its baseline can be computed. One of its facts is ({Shire

plc,NASDAQ}, 〈close, 143.87, 166.31〉).

3.2 The Bootstrap in a Nutshell
So far, we have been assuming the existence of a statistical method on which the calculation

of confidence intervals [θ̂1, θ̂2] is based on. This specific method is called bootstrap (Efron
and Tibshirani, 1986), a computationally-intense non-parametrical algorithm that provided a
sample x = (x1, . . . , xn) from an unknown probability distribution F , gives an estimation
parameter of some population parameter θ = t(F ) from x. This estimation, θ̂, is also known
as the plug-in estimator, defined as t(F̂ ). For this paper, we are interested in the plug-in
estimator of the mean, which is defined by µ̂ =

∫
xdF̂n(x) = 1

n

∑n
i=1Xi = Xn. Many

different applications can be derived from this method including confidence intervals, which

- 149 -



An Approach for Alert Raising in Real-Time Data Warehouses

are of our interest in this paper. Bootstrap is a proven valid method with its grounds on the
prominent Central Limit Theorem (CLT), (Efron and Tibshirani, 1994).

The main idea behind bootstrap is to repeatedly calculate the plug-in estimator a certain
number of times b, where this value b lays in the order of magnitude of hundreds or thousands.
Each pass on which this estimator is calculated is a sample x∗, i.e. a portion, of the real
population, usually the 2.5% - 5% . One can later order this results T1, . . . , Tb in order to get,
for instance, the aforementioned confidence intervals [θ̂1, θ̂2].

For example, let us assume that we have a dataset sample x consisting of 100 elements
comprised within the range [1, 10] for which we do not know in advance their distribution.
The first step of the bootstrapping algorithm consists of performing a high number of passes
through the dataset. In each pass we will be taking a random sample with replacement (every
element x[i] has a probability 1

100 to be selected) of 5% from the total, hence samples of size
5.

For each of the b passes, the plug-in estimator Ti for the mean will be calculated, this is µ̂i.
– x1 = 3, 5, 4, 3, 8→ µ̂1 = 4.6
– x2 = 9, 3, 4, 2, 1→ µ̂2 = 3.8
– . . .
– xb−1 = 4, 3, 1, 2, 1→ µ̂b−1 = 2.2
– xb = 2, 2, 1, 4, 6→ µ̂b = 3
In order to retrieve the confidence interval from the set {µ̂1, . . . , µ̂b}, we just need to order

it in an ascending manner: [2.2, 3, . . . , 3.8, 4.6] to further retrieve the 5% and 95% percentiles
as the bounds for a confidence interval with a 90% confidence. Hence, the resulting confidence
interval [θ̂1, θ̂2] is [3− 3.8].

4 Approach
This section details our approach for automatically detecting, in a real-time DW, anomalies

that could be of interest for analysts. Our approach is user tailored in the sense that it takes
into consideration user queries to decide whether an alert has to be raised or not.

4.1 General Architecture
Let us recall that, following the real-time architecture of (Ferreira and Furtado, 2013),

historical data is stored in the S-DW (on disk), while most recent data is stored in D-DW (in
memory). Following the underlying bipartite physical architecture, our approach is mainly
made of two phases, as illustrated by Figure 2. Even though we use the previously described
architecture, it is not the purpose of this paper. Our contribution is not about how to design a
RT-DW, but rather how to design and implement an anomaly detection algorithm based on an
already available RT-DW architecture.

Coming back to the two phases, a first phase, referred to as the offline phase, consists of
computing baselines over S-DW, by means of the bootstrap method. For each query selected
from the query log, a confidence interval is obtained for every reference and measure of the
baseline. To some extent, that interval stands for a normality range for all the primary facts
that have been considered for computing the answer to the monitored query. This offline phase
is processed periodically; refreshment frequency is a function of the number of new facts, the

- 150 -



M. López et al.

FIG. 2 – Overall architecture

number of primary facts contributing to query result and the size of query result. Note that
the set of queries to monitor can be automatically selected from the query log (e.g. based on
query frequency or user interaction) or can be explicitly stated by the user. Our approach is
independent of the way the queries are selected.

The second phase, referred to as the online phase, consists of analysing each fresh fact as
it arrives in the D-DW, to look for anomalies. To do so, we identify the baselines that cover
this fact, i.e., the baselines to which this fact would have contributed to if it was available at
the baseline computation time. The intuition of anomaly detection is that, a fact is flagged as
abnormal for a given measure, regarding a given baseline, if the value of the measure for this
fact is out of the bounds of the confidence interval located in the corresponding baseline cell.

We distinguish three levels of anomaly detection: baseline cell, baseline, and overall group
of baselines. At baseline cell level, we count the number of new facts covered by that cell that
are out of the confidence interval of at least one of the measures. We also maintain a counter
for each baseline, that is incremented whenever a fact is detected as abnormal regarding any of
the baseline cells. Finally, a global counter counts the number of anomalies within the whole
group of baselines. Alerts are raised at a given level when the ratio of anomalies on a given
period of time reaches a user defined threshold.

As depicted in Figure 2, the online steps of our algorithm mainly act upon components
located in memory. Indeed, the baseline matching operation only involves most recent data
and baselines, that are both of relatively small size and are stored in memory. These two
aspects make this operation very fast in terms of computation time. Another important point is
that baselines are a kind of summary of the S-DW, and they are not storage consuming. This
fact is important and supports the feasibility of our approach, as it does not require unrealistic
amounts of memory.

4.2 Computing Baselines
The first, and only offline phase of our approach, is to compute baselines from the S-DW,

as shown in Algorithm 1. The idea of the process is, for each query to monitor (line 2), to

- 151 -



An Approach for Alert Raising in Real-Time Data Warehouses

Algorithm 1 Computing Baselines
INPUT MQ: monitoring query set, DHIST : historical cube, DWMeas: DW measure set,

b: number of bootstrap replications, s: sampling percentage, f : bootstrap estimator, α:
confidence interval width

OUTPUT B set of baselines
1: B = ∅
2: for q = 〈g, {(l1 ∈ V1), . . . , (ln ∈ Vn)}, QMeas〉 ∈MQ do
3: for m ∈ DWMeas do
4: for ref ∈ V1 × . . .× Vn do
5: q′ = 〈g0, {(l1 ∈ {ref(1)}), . . . , (ln ∈ {ref(n)})},m〉
6: S = S ∪ {(ref, Bootstrapped Confidence Intervals(q′,DHIST , b, s, f, α))}
7: B = B ∪ S
8: return B

Algorithm 2 Bootstrapped Confidence Intervals
INPUT q: query, DHIST : historical cube, b: number of bootstrap replications, s: sampling

percentage, f : bootstrap estimator, α: confidence interval width
OUTPUT S = 〈meas, θ̂1, θ̂2〉

1: EstimatorList = 〈〉
2: x∗ = q(DHIST )
3: for i = 1→ b do
4: CurrentSample = randomSample(x∗, s)
5: EstimatorList = EstimatorList ∪ f(CurrentSample)
6: Sort(EstimatorList)
7: return 〈q.m,EstimatorList[b× (1− α)], EstimatorList[b× α]〉

compute the confidence interval for each measure present in the cube (line 3) and for each
reference (line 4) of the query result. The calculation is done by using the boostrap method
(line 6) using the same predicate filters as the query at hand and the finest group-by set (line
5).

The calculation of each confidence interval is done by Algorithm 2. It is an adaptation
to a multidimensional case from (Pol and Jermaine, 2005), where bootstrap is applied in a
relational context. The underlying idea is that in each iteration in the number of bootstrap
replications, a sample of the query answer is taken (line 4) and its plug-in estimator, here the
mean, is obtained (line 5). That information is collected in a list that is later sorted to return
the appropriate confidence interval.

Note that the bootstrapping is performed for each measure, for each cell of the result re-
turned by query q (lines 2-4 of Algorithm 1). In algorithm 2, the query q′ provided as ar-
gument only concerns one particular measure and one particular cell of q. So, given a cube
with a number m of measures, and a query q whose result contains c cells, we perform m× c
bootstrappings to record in each cell c a confidence interval. For each cell c, the bootstrap
algorithm is applied by considering as bootstrap sample the primary facts (at the most detailed
level) covered by c (line 2 of Algorithm 2).

Baseline recomputation can be naively done at each refresh. However, the recomputation

- 152 -



M. López et al.

of a baseline is only necessary when too many fresh facts covered by that baseline have been
propagated into S-DW. The bigger this number of facts is, the less relevant the confidence
intervals of the baseline are. We use this observation to improve our algorithm, by assigning
to a baseline the probability that a given fact is used for one of its cell computation. This
probability is |DDWQ|

|DDWQ|+|SDWQ| × (1− (1− s)b)× (1− (1− 1
|Q| )

|DDWQ|+|SDWQ|), where Q
is the query from which the baseline is derived, DDWQ (resp. SDWQ) is the set of facts of
DRT (resp. DHIST ) covered by Q, s the bootstrap sampling percentage, and b the number of
bootstrap replications. In this formula, |DDWQ|

|DDWQ|+|SDWQ| is the probability that the fact comes
from DDWQ, and (1 − (1 − s)b) is the probability that a fact is chosen for the bootstrap
computation. Finally, (1 − (1 − 1

|Q| )
|DDWQ|+|SDWQ|) is the probability that a cell of the

baseline covers at least a given primary fact, which is derived from the Cardenas formula,
widespread in data warehousing (Shukla et al., 1996). A given baseline is recomputed if this
probability exceeds a threshold. In any case, we still need to refresh |SDWQ|, by incrementing
it by the total number of comparisons performed so far at baseline level and for this baseline.

4.3 Anomaly Detection
The core of the approach is depicted in Algorithm 3, a process which continuously runs

in background by performing comparisons of the just arrived real-time information with the
relevant, and already calculated baselines. In this algorithm, we compare a given fact to each
of the relevant baselines (line 2) that have been gathered from Algorithm 5 (line 1). Basically,
Algorithm 5 extracts relevant baselines from the whole set of baselines. So, for each of them,
Algorithm 4 checks for anomalies.

Algorithm 3 Real-time Anomaly Detection
INPUT fact: Fact ∈ DRT , B : set of baselines

1: let RB = relevantBaselines(fact,B)
2: for b ∈ RB do
3: checkForAnnomalies(fact, b)

Algorithm 4 Check for Anomalies
INPUT fact = 〈factRef, factMeas〉: Fact ∈ DRT , b : baseline

1: let bCell = 〈ref, {(m1, θ̂11, θ̂
1
2), . . . , (mn, θ̂n1 , θ̂

n
2 )}〉 ∈ b such that ref � factRef

2: let counters = getCounters(b, bCell)
3: let flag = ∅
4: for mi ∈ {m1...mn} do
5: if ¬(θ̂i1 ≤ mi ≤ θ̂i2) then
6: flag = increaseCounters(counters, b, bCell)
7: if flag > 0 then
8: raiseAlert(flag, b, bCell)

Algorithm 4 starts by identifying the appropriate baseline cell to which the fact contributes
(line 1). Then, for each mesure of the fact (line 3), we check if the value of the measure is out

- 153 -



An Approach for Alert Raising in Real-Time Data Warehouses

of the confidence interval (line 4). If so, the increaseCounters function (line 5) increments
the appropriate counters at the three alerting levels (baseline cell, baseline and overall set of
baselines) and compares them againt the appropriate thresholds. It returns a flag indicating
if some alerts have to be raised and some alerting levels. The raiseAlert function raises the
corresponding alerts (line 6). Counters and thresholds are global, we gather them thanks to the
getCounters function (line 2), that returns, for the three alerting levels, the set of anomaly
counters, the set of processed fact counters and the set of thresholds.

Algorithm 5 Relevant Baselines
INPUT Fact = 〈FactRef, FactMeas〉: fact ∈ DRT , B set of baselines
OUTPUT S: set of relevant baselines

1: S = ∅
2: for b ∈ B do
3: for 〈ref, cell〉 ∈ b do
4: if ref � FactRef then
5: S = S ∪ {b}
6: return S

The cube given in Section 2 contains five measures, that are open, high, low, close and vol-
ume. We assume thatQ1 returns one member [NASDAQ] for level [Market.Geography].[Market
Name] and two members [Shire plc] and [Grifols, S.A.] for level [Security.Geography]. [Or-
ganisation]. When Q1 is monitored, q in line 2 of Algorithm 1 stands for Q1. Following the
algorithm convention, we have Q1 = 〈{[Security.Geography].[Organisation], [Market.
Geography]. [MarketName]}, {([Security.Geography].[Region] ∈ {Europe}),
([Security.Activity]. [Sector] ∈ {[HealthCare]})}, close〉.

For each measure of the cube (line 3), for each reference extracted from the result of
Q1 (each cell), we derive a query Q′ that returns the facts related to this reference, at the
finest level of details. In this precise case, we derive two queries for each measure m in
{open, high, low, close, volume}, that are:

– Q′1 = 〈g0, {([Market.Geography].[MarketName] ∈ {[NASDAQ]}),
([Security.Geography] ∈ [Shire plc])},m〉

– Q′2 = 〈g0, {([Market.Geography].[MarketName] ∈ {[NASDAQ]}),
([Security.Geography] ∈ {[Grifols, S.A.]})},m〉

Bootstrapping is run separately for each derived query (Algorithm 2), and the correspond-
ing cell in the baseline is populated by the confidence interval obtained for measure m. In our
case, each baseline cell contains five confidence intervals, one for each measure.

When a new fact comes, for instance 〈[Market Name].[NASDAQ], [Security Symbol].[Shire
plc], close = 143.70, ... 〉, relevant baselines are extracted (algorithm 5). Then, for each base-
line (algorithm 4) the right cell is extracted (line 1), and the counters are increased according
to the result of the comparison (line 6). The example baseline is extracted as it matches the
fact. This is more precisely the first cell of this baseline that contains the fact, so the fact is
compared to the confidence intervals in this cell for each measure. It appears that for measure
close, value 143.70 is out of the confidence interval bounds [143.87 - 166.317], so an anomaly
counter is incremented for this precise cell, another for the baseline that contains the cell, and
another global counter.

- 154 -



M. López et al.

5 Evaluation
In this section, we first describe a prototype system which implements the previously de-

scribed features, and proofs the feasibility and correctness of the approach. Next, we present
our experimental findings using the prototype and the running example described in Section 2.
In order to evaluate the quality of the approach, we make use of two real-world cases based on
the data model described in Section 2.
Baseline computations and the assessment of new facts are transparent and non-disruptive from
a user interaction perspective. The former may take place in a batch mode during low user in-
teraction periods -e.g. nightly or weekly- and the latter may be performed as an asynchronous
background thread. Despite this, we considered important to assess the efficiency of these
processes and identify potential improvement opportunities.

5.1 Prototype
In order to provide a proof of concept we designed a prototype implementation of the

alerting system working on top of a real-time data warehouse. With a simple, but yet powerful
interface, it allows the user to run queries to the different cubes, while storing the queries in the
query log and baseline calculation. On the background, as new data arrives into the real-time
data warehouse, the monitoring component executes Algorithm 3 in order to raise alerts.

OLAP schema and cubes are handled by Mondrian, an open source OLAP server (Pentaho,
2009). DHIST and DRT are stored as two independent cubes with their corresponding real-
time or historical data sources, in a MySQL database using respectively disk and in-memory
engines, which implements the data model introduced in Section 2. The Data Acquisition
Module (DAM) is made up by two Python scripts and a number of batch scripts that crawl
quotes from Yahoo Finance API and push data into the real-time data warehouse. As far as
markets are concerned, the prototype contains data from the following institutions: MERVAL,
IPC, NASDAQ, NYSE and BOVESPA. In terms of securities, we have chosen the top 1000
companies with the greatest market capitalisations in NASDAQ and NYSE markets. On top of
that, an additional number of 50 securities from the Argentine, Brazilian and Mexican markets
were added. Last but not least, around 10 major currency exchange rates were included. The
time horizon is meant to date back to 50 years ago. Nevertheless, we noticed that the data
volume greatly varies from the distant past (1 record every quarter up to 50 years ago) to the
recent past (400 records for up to 1 day ago).

There is an important trade-off to be considered in Algorithm 2, that is whether to perform
random sample selection and plug-in estimator calculation at database level or in the applica-
tion logic. Current implementation considers the latter, hence it only needs a single access to
DHIST per query, this entails less encumber to the database and possibility to benefit from
concurrency techniques like multithreading. On the other hand, by moving those operations
down to database level, we can take advantage of optimised sampling and aggregation, by
making use of indexing structures, for instance.

5.2 Experiments
Experiments have been performed using the query log presented in Section 2. Regarding

parameters, we used what we considered standard values, specifically this is 100 replications

- 155 -



An Approach for Alert Raising in Real-Time Data Warehouses

for bootstrapping with samples of 1% of relevant records. For comparison purposes, we used
a number of 3 standard deviations. In turn, the anomalies threshold was set to 0.1%.

5.2.1 Case 1: A Black Day for Markets

We chose October 10th, 2014 as an interesting point. As NASDAQ Composite Index
plummeted by 2.33% that day, we wanted to check whether the system would have early
warned users so that they were able to make better business decisions in a timely fashion (e.g.
selling stock whose price was falling). DHIST contained data from 4/Jan/1965 to 10/Oct/2014
at 13:29 GMT (1,974,462 rows). In turn, DRT contained data for 10/Oct/2014 between 13:30
and 13:35 GMT (854 rows).

Baseline computation We computed 4 baselines (B1, B2, B3, B4) for the 4 monitoring
queries (Q1, Q2, Q3, Q4) described in Section 2. The table below shows the experiment
results in terms of output cells, time and storage. We can see that computation time is more
sensitive to the number of input facts than to the number of output cells. In particular, the
computation time increases proportionally to the number of input facts.

Input Results
Input Facts Coordinate Groups Output Cells Time (min) Storage (KB)

Q1 18.263 10 50 8 9
Q2 152.063 80 400 56 74
Q3 34.868 406 2.030 9 378
Q4 33518 20 100 1 19
Totals 209.072 516 2.580 74 480

Assessment of new facts Only 90 out of the 854 facts present in DRT were relevant for the
available baselines (8 facts were linked to B1, 62 to B2, 18 to B3 and 2 to B4). Considering
that the cube has 5 measures, those 90 facts demanded 450 comparisons. All of them were
assessed in about 627 seconds, which represents averages of 1.39 seconds/measure/fact.

Out of the 450 comparisons performed, the baseline B3 detected 6 anomalies. The cells
involved were linked to security symbols TXN (High and Close measures) and MCHP (Open,
High, Low and Close measures). As the threshold of 0.1% we had set was exceeded at baseline
level (6 out of 90), at baseline cell level (1 out 1 in 6 cells) and at general level (6 out of 450),
alerts were issued in the three of them.

By performing an ex-post analysis of what happened with stock TXN, we notice that five
minutes after the alert, the price kept on falling. A business user would have valued a timely
alert, not only because this would have allowed him or her to close positions on that stock
but also because that would have represented an early warning of what was going to happen
in NASDAQ that day. Going into details, the Closing price of TXN at 13:34 (42.674 USD)
fell 2.42% compared to the Opening price of the immediately subsequent transaction that was
registered at 13:39 (41.64 USD).

At variance with TXN, if we check the case of MCHP, we see that price went up just after
the alert. Then, there was a declining cycle, followed by an ascending cycle and then there
was another declining cycle. At the end of the day, price turned out to be higher than the one

- 156 -



M. López et al.

detected by the alert. However, if we analyse this from a broader perspective, the alert would
have enforced the warning on the general behaviour of NASDAQ market that day.

5.2.2 Case 2: An Apparently Quiet Day

November 13th, 2014 has been apparently a quiet day for NASDAQ market as a whole.
NASDAQ composite showed an overall slight increase of almost 0.11%. Particularly, DHIST

contained data from 4/Jan/1965 until 13/Nov/2014 at 13:29 GMT (3,221,378 rows). In turn,
DRT contained data for 13/Nov/2014 between 13:30 and 14:34 GMT (1386 rows).

Baseline computation Results below confirm the relationship between the number of input
facts and the amount of time that the baseline computation takes. Compared to Case 1, the
number of input facts increased around a 62% and so did the baseline computation time.

Input Results
Input Facts Coordinate Groups Output Cells Time (min) Storage (KB)

Q1 29.576 10 50 10 9
Q2 247.432 80 400 91 74
Q3 57.186 406 2.030 15 378
Q4 5.880 20 100 2 19
Totals 340.074 516 2.580 118 480

Assessment of new facts In this case, we had 1386 facts inDRT but only 110 of them where
relevant for baselines (10 facts were linked to "European Health-Care Companies", 80 to "US
Health-Care Companies", 18 to "Semiconductors firms in NASDAQ by Year" and 2 to "Water
Supply firms by Year"). Considering the number of measures, those 110 facts which yielded
550 comparisons. All of them were assessed in 384 seconds, representing averages of 0.7
seconds/measure/fact, which is lower than the figure obtained in Case 1. No anomalies were
detected in any of the four baselines, which makes sense since overall figures show that it was
a quiet day for the market.

6 Related Work

Real-Time warehousing has become a reality in companies for some time now and the real-
time keyword is part of many of the characteristics described by vendors of data warehousing
products like Oracle or Vertica. Real-time solutions typically rely on a smaller repository (ide-
ally an in-memory one) holding the most recent data, to allow faster loading and refreshing,
without affecting the performance of querying activity (Ferreira and Furtado, 2013; Cuzzocrea
et al., 2014). While products and approaches claiming to offer real-time data warehousing
should encompass all parts of the architecture (ETL, materialising, refreshing, etc.), earlier
real-time warehousing approaches were limited in the way they handled the simultaneity be-
tween online querying and continuous data loading (Vassiliadis and Simitsis, 2009; Zuters,
2011; Jain et al., 2012). Those limitations led to the proposal in (Ferreira and Furtado, 2013),
where queries and data loading occur simultaneously with minimum performance degradation.

- 157 -



An Approach for Alert Raising in Real-Time Data Warehouses

At variance with real-time data warehouses, which aim at capturing business activity data
as it occurs, active data warehouses (Thalhammer et al., 2001) were designed to support au-
tomatic decision-making when faced with routine decision tasks. Inspired by active database
systems, active data warehouses implement rules that are used to trigger predetermined OLAP
queries in response to events detected on the data sources or that occur periodically (Thalham-
mer et al., 2001; Zwick et al., 2006). Our proposal can be seen as a form of real-time active
data warehouses, where events are the anomalies detected and the predetermined queries cor-
respond to baselines.

Finally, we note that our approach borrows from techniques proposing models of data
cubes. For instance, approximate query answering in OLAP pursues the idea of compressing
the data cube in order to obtain approximate answers to efficiently processed OLAP queries,
whose approximation error is tolerable. Modeling the cube can be achieved either from base
data (e.g., by using clustering (Yu and Wang, 2002)) or from aggregated data (e.g., using
information entropy (Palpanas et al., 2005)).

7 Conclusion

This paper introduces an approach for alert raising in a real-time data warehouse architec-
ture, where fresh data are in memory while historical data are stored on disk. We assume that
items in the query log express the sets of facts that users would like to monitor. In an offline
phase, for each of these queries we build an in-memory structure, called baseline, recording
a confidence interval for the facts contributing to each cell of the query result. Then, fresh
data are compared to the appropriate baselines and used to raise alerts. We implemented the
approach and illustrated its interest in the domain of technical analysis of stock markets.

As future work, we will first address the optimisation of baseline computation, which might
be seen as the bottleneck of our approach. We will particularly study strategies for an iterative
computation of baselines, using a combination of application logic and database features. We
also plan to test our approach in a more realistic data warehouse situation, where anomaly
detection competes with regular analytical queries. Particular attention needs to be paid to
the trade-off between storage space needed for baselines and the number of alerts triggered.
Finally, a longer term goal would be including our approach in a full active data warehouse
setting, where complex analyses are triggered in response to the alerts raised.

References

Cuzzocrea, A., N. Ferreira, and P. Furtado (2014). Real-time data warehousing: A
rewrite/merge approach. In DaWaK, pp. 78–88.

Efron, B. and R. Tibshirani (1986). Bootstrap methods for standard errors, confidence intervals,
and other measures of statistical accuracy. Statistical science, 54–75.

Efron, B. and R. J. Tibshirani (1994). An introduction to the bootstrap, Volume 57. CRC press.
Ferreira, N. and P. Furtado (2013). Real-time data warehouse: a solution and evaluation.

IJBIDM 8(3), 244–263.

- 158 -



M. López et al.

Ferreira, N., P. Martins, and P. Furtado (2013). Near real-time with traditional data warehouse
architectures: factors and how-to. In IDEAS, pp. 68–75.

Golfarelli, M. and S. Rizzi (2009). Data warehouse design: Modern principles and method-
ologies. McGraw-Hill, Inc.

Jain, T., R. S, and S. Saluja (2012). Article: Refreshing datawarehouse in near real-time.
International Journal of Computer Applications 46(18), 24–29.

Jörg, T. and S. Dessloch (2009). Near real-time data warehousing using state-of-the-art etl
tools. In BIRTE, pp. 100–117.

Kimball, R. (1996). The Data Warehouse Toolkit: Practical Techniques for Building Dimen-
sional Data Warehouses. John Wiley.

Palpanas, T., N. Koudas, and A. O. Mendelzon (2005). Using datacube aggregates for approx-
imate querying and deviation detection. IEEE Trans. Knowl. Data Eng. 17(11), 1465–1477.

Pentaho (2009). Mondrian open source olap engine.
Pol, A. and C. Jermaine (2005). Relational confidence bounds are easy with the bootstrap. In

SIGMOD, pp. 587–598.
Santos, R. J. and J. Bernardino (2008). Real-time data warehouse loading methodology. In

IDEAS, pp. 49–58.
Shukla, A., P. Deshpande, J. F. Naughton, and K. Ramasamy (1996). Storage estimation for

multidimensional aggregates in the presence of hierarchies. In VLDB, pp. 522–531.
Thalhammer, T., M. Schrefl, and M. K. Mohania (2001). Active data warehouses: comple-

menting OLAP with analysis rules. Data Knowl. Eng. 39(3), 241–269.
Vassiliadis, P. and A. Simitsis (2009). Near real time ETL. In New Trends in Data Warehousing

and Data Analysis, pp. 1–31.
Waas, F., R. Wrembel, T. Freudenreich, M. Thiele, C. Koncilia, and P. Furtado (2013). On-

demand elt architecture for right-time bi: Extending the vision. IJDWM 9(2), 21–38.
Yu, F. and S. Wang (2002). Compressed data cube for approximate OLAP query processing.

J. Comput. Sci. Technol. 17(5), 625–635.
Zuters, J. (2011). Near real-time data warehousing with multi-stage trickle and flip. In BIR,

pp. 73–82.
Zwick, M., C. Lettner, and C. Hawel (2006). Implementing automated analyses in an active

data warehouse environment using workflow technology. In TEAA, pp. 341–354.

Résumé
Ce travail propose une approche pour la levée des alertes dans le cadre d’un entrepôt de

données temps-réel. Il est basé sur le calcul d’intervalles de confiance pour les mesures des
faits historiques. Des nouvelles données qui arrivent dans l’entrepôt en temps-réel sont systé-
matiquement comparés à des intervalles respectifs et des alertes sont levées lorsque des ano-
malies sont détectées. L’intérêt de l’approche est illustré sur un entrepôt permettant l’analyse
technique de données boursiéres.

- 159 -




