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Abstract. We consider an extension of classical data analysis into symbolic data
analysis to describe the management process of biological datasets produced by
multi-source clinical studies. Such extension leads to more complex data types
and tables and the metadata under consideration hold information both on clas-
sical (original) and the symbolic data. In this paper we model these metadata
items in a structured object-oriented schema for symbolic data revealing their
relations. A number of transformations are also discussed both for classical and
symbolic classes of our model in order to illustrate how the applied transforma-
tions on symbolic data depend on the related classical data setting.

1 Introduction

Symbolic data serve not only to summarize large datasets, but they also lead to more com-
plex data tables, thus enabling the manipulation of huge datasets (Bock and Diday, 2000;
Billard and Diday, 2006). Using the symbolic data techniques, data are aggregated into macro-
data, forming Symbolic Objects (SO) and Symbolic Data Tables (SDT) (Bock and Diday,
2000; Diday and Noirhomme-Fraiture, 2008; Noirhomme-Fraiture, 1997).

A symbolic data table constitutes the main input for symbolic data analysis (Diday, 2002).
It looks like a classical data table where each cell represents symbolic data, since each row
corresponds to a symbolic description of a group of individuals and each column corresponds
to a symbolic-valued variable (Noirhomme-Fraiture and Brito, 2011).

Consider a modern, state-of-the-art information system. As expected, it stores a consid-
erable amount of microdata, macrodata and related metadata for each piece of information
imported. In the case of an information system that manages biological datasets collected
from multi-source clinical studies, due to confidentiality reasons (as emphasized by UNESCO,
the Nuremberg Code, the Helsinki Declaration, etc.) all data are imported, randomized and
further used in the form of macrodata. Symbolic analysis techniques are especially useful for
managing large datasets from multiple sources; therefore they can adequately manage, among
others, biological macrodata resulting from various clinical studies.

Since, even in the classical data setting, aggregate data can be of little value to any data
consumer if explanatory information (metadata) does not accompany them (definitions, pa-
tients’ eligibility criteria, the study parameters, the risk factors, how data were collected and
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manipulated, etc.), in the symbolic data setting the need of structured metadata is more de-
manding. For example, whenever a SDT is used by information systems, its construction and
handling should be automatically accompanied by the appropriate documentation (metadata)
which, in turn, greatly improves the quality of the produced results by reducing the dangers
of data and metadata mismatches (Papageorgiou and Vardaki, 2008). Importing such amounts
of information does increase the burden of investigators’ work but the advantages of doing
so are substantial, especially when, for instance, someone attempts to combine the findings
from multiple related studies to increase the size of the population or the number of variables
studied.

In this paper, we attempt to extend classical data into a symbolic data setting to describe the
process of clinical studies’ data management. We take as a guideline the statistical, process-
oriented metadata model introduced by Vardaki et al. (2009) to describe the process of medical
research data collection, management, results analysis and dissemination. Our approach does
not interfere with the design of the clinical study, the sample selection and the data collection
stages of the above model, but we extend the management of the datasets in order to hold
metadata both for the classical (original) and the symbolic data, enabling the use of symbolic
analysis techniques. For this purpose, we introduce an abstract object-oriented metadata model
designed in Unified Modeling Language (UML) which can hold metainformation for the clas-
sical (original) clinical data and also the necessary metadata for the symbolic data setting. A
set of operators/transformations is applied for further symbolic data analysis.

2 From classical to symbolic data/metadata setting
in clinical studies

In classical data analysis, the statistical population, the sample derived through a sampling
method, as well as the sampling units examined (called individuals thereafter) and the related
(classical) variables, are the key issues to be evaluated when conducting a survey. In symbolic
data analysis, the symbolic objects are the central items. Generally, symbolic objects (u)
are defined as triplets (α, R, d) where d is a description, α is a membership function which
defines the extension of the SO and R is a comparison relation between descriptions. Some
basic references on the topic are: Bock and Diday (2000), Billard and Diday (2006), Diday
and Noirhomme-Fraiture (2008).

The symbolic setting used in this paper is explained by the following (simple) example:

Let us consider data collected in two nearly identical randomized clinical trials one under-
taken in Australasia and one in Canada, with the aim to study the effect of starting chemother-
apy immediately in asymptomatic patients with metastatic colorectal cancer (Ackland et al.,
2005). Numerous variables for each individual participating in the trial are registered (geo-
graphical, demographical, medical status, etc.) as required by the protocol of the study, some
of them considered as risk factors, such as: age, weight, gender, diagnosis stage of cancer,
etc. The collection of all classical data values for both trials’ patients is presented in Table 1
(representing the survey), where each row refers to the classical variables’ values recorded for
a single patient (individual) denoted by i: i = 1, . . . , 168.
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Treatment Prior Survival
i Area of study Gender Age · · ·

schedule chemotherapy (months)
1 Australasia Immediate M 79 No 16.2
2 Australasia Delayed F 50 No 11.0
3 Canada Immediate F 76 Yes 13.2
4 Canada Delayed M 45 No 9.3
5 Australasia Immediate F 46 Yes 15.4
6 Australasia Delayed F 38 No 9.2

. . . . . . . . . . . . . . . . . . . . .
168 Canada Immediate M 46 Yes 11.7

Table 1. Sample Dataset : Classical Data

In symbolic analysis, the objects denoted by ui are classes of the initial patients satisfying
a set of properties. As illustrated in Table 2 u1 for example, represents the group of patients
of the Austalasian trial which received immediate treatment, 76% were men (M) and 24%
women (F ), with age ranging between 46 and 80 years, the 28% of them had received prior
chemotherapy and the median of survival of the group was 15.5 months (time measured until
the end of trial).

Area of study/Treatment % received prior Survival Median
u Gender (%) Age

schedule chemotherapy (in months)

u1 Australasia/Immediate {M (76), F (24)} [46,80] 28 15.5
u2 Australasia/Delayed {M (73), F (27)} [36,77] 24 11.9
u3 Canada/Immediate {M (76), F (24)} [56,80] 26 11.9
u4 Canada/Delayed {M (73), F (27)} [50,78] 24 10.2

Table 2. Sample Dataset : Symbolic Data (mixed variables)

The variables in Table 1 are classical variables whereas the variables in Table 2 are symbolic-
valued variables (SVars).

If we select:

d = {(Area of study = Australasia) ∧ (Treatment schedule = Immediate)} and denote by α(i)
the membership function where, for a patient participating in the above clinical trials

α(i) = True iff [(Area of study = Australasia) ∧ (Treatment schedule = Immediate)], then
this condition is satisfied only by the first row of Table 2.

In our case, the R relation is the simple “belongs (∈)” linking the SVar “Area of study/-
Treatment schedule” with the particular description (d) of interest.

In the case of the above symbolic data setting, a prerequisite to enable new knowledge
extraction and the manipulation of the corresponding SOs, SDT as well as their underlying
concepts is the development of an appropriate set of statistical metadata items that would hold
additional information for the construction of a SO and a SDT, the SVars, as well as the
relation of the symbolic data setting to classical data (Papageorgiou and Vardaki, 2007).

More specifically, metadata considered for the extension of classical data to symbolic data
should describe at least the following:

- the original data used for the creation of a SO and a SDT
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- the SO, SDT and each SVar as well as the components for their creation (individuals,
groups, variables, conditions, the membership function, etc.)

- the process of the SVar, SO and SDT creation (keep the processing history) from the
corresponding classical data.

3 Metadata modeling of biological datasets for symbolic
analysis

Consider the case of the clinical studies described in the previous section. The entire
process of such a study follows several stages which, in very broad terms, can be divided
into: (i) design and development, (ii) patient accrual and data collection and (iii) follow-up
and analysis (quality control for completeness and accuracy, study monitoring, analysis and
end results).

Metadata are part of every representation of data in each of the above steps of a clinical
study. Column headers, titles, descriptions and footnotes of tables or introductory text are only
simple examples of metadata that are useful for the thorough understanding of the data. In the
case that a SDT is used as input, metadata are particularly useful especially if the user is not
very familiar with symbolic analysis and the associated presentations of symbolic data.

Consider now an individual (patient) with specific eligibility criteria and risk factors which
enters a clinical study performed in different research centers as the studies presented by Ack-
land et al. (2005). Then, metadata for the classical (original) data should be transformed using
the metadata that correspond to the class membership variables into ones describing the new set
of objects. This will include documenting the new SVars, the SOs, SDT, the relations denoting
the operators and the descriptions.

The metadata model discussed in this section extends the model for multisource biological
data/metadata introduced by Vardaki et al. (2009) to its symbolic setting in order to allow for
combined results (Figure 1). We illustrate how symbolic data depend on the individuals of
a sample, the statistical population and other elements of the original/classical data (see also
Papageorgiou and Vardaki 2008), thus extending the classical clinical datasets setting in order
to be used by the symbolic analysis techniques. The upper-right part of the model indicates
the classical setting, while the resulting symbolic part is deployed in the lower-left area. The
survey (denoted by the class clinical trial/study in the model) and the symbolic data table
are the two central classes of the model representing the main components for classical and
symbolic analysis techniques respectively.

For better understanding of the relations of classes of the model presented in Figure 1, the
classical part is discussed in Section 3.1 and the symbolic part of the model is further examined
in Section 3.2.

3.1 Modeling the classical data/metadata setting

As already mentioned, the central class of the classical setting part of the model is the
survey. Indicative attributes of the clinical trial/study (survey) before the initiation of any
process mainly concern its general framework like for example, the hypothesis testing, the
name of the trial, its type (field trial, retrospective survey, case study, drug trial, etc., according
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to the categorizations applied), purpose, phase code (I,II,III,IV), disease condition examined
(diagnostic or not), clinical syndrome, as well as specifications of the time coverage anticipated
(start date from patients accrual until the end of observations), the geographical coverage, etc.

has

TRANSFORMATIONS ON SO
name
rule
preconditions
mathematical operator
logical operator

execute operator()

TRANSFORMATIONS ON SDT
name
rule
preconditions
post-conditions

execute addition of SVar()
execute merging SDTs()
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TRANSFORMATIONS ON SVARS

these are abstract 
classes
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function (probability, frequency, weight, measure

calculate function()

Multi-valued_Var
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1..*
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exclusions

1

1..*

1
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1..*

derived by application
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SYMBOLIC DATA TABLE
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form

0..*

1..*
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FIG. 1 - Metadata model for the extension of Classical Data into Symbolic Data to describe
the process of medical research data management.

Initially, we examine a population of interest (consisting of all eligible patients) which is
examined according to one or more eligibility criteria. These are inclusion or exclusion factors
applied on every previously considered eligible patient to verify its condition. Finally, one or
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more study populations are derived which include individuals satisfying the eligibility criteria.
For example, in cases of non-diagnostic disease conditions, a “low threshold for admission” is
required (examined as attribute in eligibility criterion). We must properly define the study pop-
ulation in use (i.e., the analytical definition and description, exclusions, as well as a database
identification code (denoted by id-code) since a center’s database can handle different study
populations simultaneously or may need to be considered as a retrospective survey in a future
experiment.

Usually it is not desirable or feasible to examine every unit included in the study popu-
lation, so a sampling method is applied to derive a smaller, but representative enough, set of
units (sampling individuals), the sample. The selected sample consists of sampling individ-
uals having specific properties. The sampling units, in the case of one-stage sampling, form
the individuals of each study (study individuals) which finally participate in the symbolic data
setting. Since biological variation is such that patients with the same medical disease will
almost certainly show varied responses to a given treatment, clinical trials inevitably require
groups of patients (Gardner et al., 2001). Therefore, we should apply one or more grouping
criteria to patients and form groups (groups of individuals). Each formed group of patients has
different characteristics and properties as well a unique database id-code for further database
processing.

Finally we describe each original variable/factor which defines and documents the char-
acteristics of the study subjects and of the entire clinical study.

It should be noted that the consideration of samples in the model serves mainly in selecting
the appropriate Individuals to form Groups and as a pre-condition for the relative transforma-
tions of Section 4 to be valid. Other tasks like i.e. performing inferential analysis, is not in the
scope of this paper.

A more extended model of classical data/metadata, their relationships, dependencies and
operators have been broadly discussed in Vardaki et al. (2009) and Vardaki and Papageorgiou
(2010).

3.2 Modeling Symbolic data/metadata

Whenever composing groups of individuals and symbolic objects, there is a need to de-
scribe their process of synthesis and also provide essential metadata both for the interpretation
of the results and for the handling of the output for further processing.

In our case, the main link class with the classical setting described in Section 3.1 is the
formulation of the symbolic object from a group of individuals derived through the application
of a grouping criterion. For example, in the two randomized trials described in Section 2 one
grouping criterion applied to both studies has been the “treatment schedule” defined by the
related classical variable/factor.

Although the classical definition of a SO given in Section 1 does not directly consider the
groups of individuals as part of the SO description, in clinical trials, the information on as-
sociated groups of individuals is essential. Therefore, in order to further use a derived SO,
we should hold metadata on the groups description, grouping factors applied, number of in-
dividuals included in each group, the source of the clinical trial, denoted by source-id (i.e.
Australasian or Canadian center in our example), etc.

The Symbolic Data Table is the central class for symbolic data analysis and it is related
with the SO and SVars classes by the way it is constructed, where each row represents the
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description of a SO and each column is a SVar. Therefore, any operator applied on a SO or a
SVar affects the corresponding SDT they represent.

Concerning a SVar, its description, domain and kind are kept as attributes; a symbolic
valued variable can be of a kind either as an interval variable (its values are intervals or ordered
categorical values), a multi-valued variable (its values are sets of values), or a modal variable,
which is more complex than the others. A value of a modal variable is a set of pairs, where
each pair consists of a value observed in the specific group of individuals and its relative
function that can be calculated using a frequency, probability or weight distribution (for more
information see Billard and Diday, 2003). The SDT column number is also considered by the
model for further use in any operator process.

Since clinical study datasets (original data) but also their symbolic settings are aggregated
data (macrodata), a user of such biological information would benefit if he/she could be able to
trace back quickly the processing history of specific datasets creation with minimum response-
time. A way of achieving this goal is by using such a highly structured model as the one
discussed in this section embedded with operators and transformations for the manipula-
tion of data. Similar transformations as the ones performed for classical data can be applied
for symbolic data having a number of pre-conditions as discussed in the following section.

4 Transformations on symbolic data

A transformation is the result of simple or complex processing steps on clinical data, either
classical or symbolic. It models any post-processing steps applied to datsets, describing their
outcome on both the data and the metadata. Examples of transformations range from the simple
merging of two clinical studies, to the evaluation of a complex clustering algorithm.

In accordance to a classical data setting, a number of transformations can be executed
for symbolic data since our model keeps information about the series of processes that have
been applied on the data of a survey or a SDT. The model’s structure specifies which data and
metadata items we will capture; the operators permit the execution of processing of metadata
items included in the model, while the transformations ensure the validity and automation of
data/metadata manipulations.

For symbolic data setting, the operators permit the execution of a specific process required
for the extension of classical data to symbolic data and each of these processes is denoted in
the operators part of each class by an “apply process()” operator. For example, the “apply
mapping()” in classes group of individuals and symbolic object is required in order to denote
the application process of the mapping relation and the mapping association accordingly. In
classical data, similarly, the “apply method()” included in the sampling method class is an
operator necessary for the derivation of a sample.

Each transformation identifies a set of rules (preconditions) to be valid. The pre-conditions
are used by an automated system to decide whether a transformation can be applied, thus min-
imizing possible errors. Furthermore, each transformation defines post-conditions which are
used when a chain (workflow) of two or more transformations must be optimized, describing
the properties of its results. For instance, if the post conditions deduce that two transformations
are interchangeable, then the system can arrange the order of their evaluation in such a way
that resources and processing time is minimized.
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As illustrated in the model of Figure 1 specific transformations can apply on SOs, SVars
and SDTs. Transformations vary from simple ones, like ‘Sorting of a SO’, ‘Suppression of a
SO’, ‘Change label’, ‘Sorting of a SVar’ and ‘Suppression of a SVar’ for symbolic objects and
symbolic-valued variables accordingly, to more complex transformations which need a number
of pre-conditions to be valid.

The application of transformations is denoted by the relative operator for its execution in
each associated class of the model. Nevertheless, for demonstration purposes we illustrate
the input and output classes of each transformation with the use of abstract classes like the
“Transformations on SDT”, “Transformations on SO” and “Transformations on SVars” which
are not logical classes but have been included only for demonstration purposes.

In this paper, we do not intend to include all possible transformations since we expect users
to add, or modify transformations, simply by writing and publishing the SQL code required
and the pre- and post-conditions. We should note however, that all transformations, by their
definition, have the closure property, meaning that, the application of a transformation on a
SDT produces a new SDT. The closure property is important as it allows for the chaining of
two or more transformations to describe more complex processing flows. This feature permits
our model to track the history of processing steps applied on clinical trials, effectively allowing
users to confirm their correctness and, most importantly, to assert the quality of the information
produced. Indicative transformations are described as follows:

Addition of a symbolic-valued variable (SVar) in a SDT

We can add a symbolic-valued variable to an existing SDT only if the study population
of the classical data for the particular clinical trial has such a measurable characteristic. This
transformation can be applied when we manage datasets from the same clinical trial, since the
main precondition of this transformation is that the SVars under consideration refer to the same
study population and sample. In the database and the resulting SDT, existing data tables will
be extended with an additional column for the new SVar.

Merging SDT

This transformation is very useful when different institutes perform clinical studies in var-
ious countries (or in general, for clinical datasets having different study populations), as dis-
cussed in Ackland et al. (2005). In such cases, a new SDT is produced and further processed
in the database containing data from the previous two SDTs. In order for this transformation
to be valid, it is required that:

a) the SVars of both SDTs are equivalent (see Vardaki et al., 2009, for more information on
equivalence relations),

b) the intersection of the two original study populations is empty (void). This pre-condition
is needed to ensure that the resulting groups of individuals forming the SOs of the SDT
do not incorrectly contain duplicates that may lead to biased results.

Merging of SDT can be performed by joining, one under the other, two symbolic data tables
with equivalent SVars having the same order in each table. Therefore, we produce a new table
(SDT) having the same columns (SVars) as the two initial tables and its rows will be the rows
of both SDTs under consideration.

Selection of SOs

It is common in a clinical trial, like in every survey, that an investigator may need only sub-
sets of the data collected. When we require only a part of the study individuals for further anal-
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ysis, in fact we apply an exclusion grouping criterion on the individuals, thus producing a new
group of individuals describing a new SO. The result of applying this transformation is a new
SDT holding only a subset of the initial SOs satisfying the selection criterion. For example, in
our example of the clinical trials examined by Ackland et al. (2005), we can apply a selection
transformation to remove from the SDT the groups of patients with risk factor: “Weight ≥ 90
kgs”. The excluded patients may be represented by one or more SOs in the SDT depending on
the partitioning of the classification we use for the “Weight” variable. In fact, if we consider the
SVar “Weight” as an interval variable with step width: 10, then, in our example, we can have
the following partitioning into 4 groups: {[60, 70), [70, 80), [80, 90), [90, 100), [100, 110)},
(initial inclusion criterion for trial entry of an individual (i) regarding the weight risk factor
was: 60 ≤ i < 110). In this case, two SOs will be removed from the SDT, the ones that are
characterized by the weight group [90, 100) and [100, 110).

Projection of SVARs

This transformation represents a symbolic-valued variable removal from the SDT. It is a
transformation that removes an entire column from a SDT and implicitly defines a SDT holding
only a subset of SVars. For example, in clinical trials, we can apply projection for removing
the symbolic-valued variable that reveals the risk factor “weight” of the group studied.

The abstract classes “Transformations on SDT”, “Transformations on SO” and “Trans-
formations on SVars” are provided for the execution of each of the above transformations.
Regarding the discussed “Transformations on SDT”, the input can be one or more SDTs and
the output of each transformation is one new SDT. Series of transformations can be applied,
each one producing a new table which is uniquely stored in the database and the history of the
various SDTs produced with the application of various transformations is maintained.

5 Conclusions and suggestions

In this paper, we do neither consider new terminology nor intend to include all metadata
required for symbolic data analysis of biological datasets. Our contribution is that we structure
metadata in such a way that the processing of classical into symbolic data/metadata setting can
be partially automated. For example, if someone attempts to add a new individual (i′) who has
description (d′) to a group of individuals of a SO (u) with description (d), the model will warn
the user in the case that the description (d′) does not match the description (d) of the target
SO. This is achieved by the system’s support of transformations which formally describes the
result of simple or complex processing steps on symbolic clinical data.

Further steps should include the definition of a quality framework in the form of metadata
for all stages followed in extending the classical setting into the symbolic data setting for the
clinical study data collected and managed using the structured statistical model described in
this paper. Such quality assurance framework would allow for automatic quality assessment in
all processing steps of further Symbolic Data Analysis techniques.
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