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1 Introduction
The fields of data mining and constraint programming are amongst the most successful

subfields of artificial intelligence. Yet, their methodologies are quite different. Constraint pro-
gramming advocates a declarative modeling and solving approach to constraint satisfaction
and optimisation problems. Data mining on the other hand has focussed on handling large and
complex datasets that arise in particular applications. Pattern mining more specifically aims to
extract interesting patterns from a dataset, where interestingness is often defined by the appli-
cation at hand. Current ad-hoc methods often focus on special-purpose algorithms to specific
problems and interestingness criteria. This typically yields complex code that is very efficient,
but hard to modify or reuse in other applications. Hence, less attention has been devoted to the
issue of general and generic solution strategies.

Nevertheless, there is a need for generic techniques that can handle variations of known
tasks, as well as application-driven constraints (Dzeroski et al., 2010; De Raedt et al., 2011).
The typical iterative nature of the knowledge-discovery cycle (Han et Kamber, 2000), in which
the data and problem definition are iteratively defined based on prototyping and small scale
evaluations. In this case, the problem specification typically changes between iterations, which
may in turn require changes to the algorithms.

This is acknowledged in the field of constraint-based mining, which adopts the metho-
dology of formulating a problem in terms of constraints (Nijssen, 2010; Boulicaut et Jeudy,
2005). For example, for itemset mining (Agrawal et al., 1993), a wide variety of other cons-
traints and a range of algorithms for solving these constraint-based itemset mining problems
(Mannila et Toivonen, 1997; Jr. et al., 2000; Pei et Han, 2000; Pei et al., 2001; Bucila et al.,
2003; Han et al., 2007; Soulet et Crémilleux, 2005; Bonchi et Lucchese, 2007) has enabled
the application of itemset mining to numerous other problems, ranging from web mining to
bioinformatics (Han et al., 2007). Generic frameworks in the constraint-based mining litera-
ture have focussed on the (anti-)monotonicity of constraints (Mannila et Toivonen, 1997; Pei
et Han, 2000; Bucila et al., 2003) leading to systems such as ConQueSt (Bonchi et Lucchese,
2007), MusicDFS (Soulet et Crémilleux, 2005) and Molfea (De Raedt et Kramer, 2001). While
many typical data mining tasks consist of (anti-)monotonic constraints, many other constraints
do not fit in this framework, such as finding closed patterns in dense data (Pasquier et al., 1999;
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Pei et al., 2000), or mining for correlated patterns in supervised data (Morishita et Sese, 2000;
Cheng et al., 2007). Frameworks that are more generic than (anti-) monotonicity and in which
arbitrary combinations of constraints are allowed have been missing.

2 Constraint programming and itemset mining
The CP4IM framework (De Raedt et al., 2008; Guns et al., 2011a) was the first to propose

a generic CP-based framework for constraint-based itemset mining. The framework encom-
passed frequent itemset and constraints ranging from typical (anti-) monotone constraints such
as size and cost of the pattern, as well as condensed representation constraints such as closed
and maximal.

Since then, many different works have extended this approach, including :
— Use of different declarative solving techniques. Other techniques explored include

knowledge compilation and BDDs (Cambazard et al., 2010), Answer Set Programming
(Järvisalo, 2011) and SAT solving (Jabbour et al., 2015; Coquery et al., 2012) ;

— Pattern set mining, also known as n-ary patterns. Here the goal is not to find all indivi-
dual patterns, but rather to find a concise set of n patterns (Guns et al., 2011b; Khiari
et al., 2010) ;

— Optimisation and top-k mining. Also here the goal is not to enumerate all satisfying pat-
terns but rather to find the optimal pattern, e.g. according to a measure of correlation or
discrimination (Nijssen et al., 2009), or to find the top-k most optimal patterns (Jabbour
et al., 2013).

— Multi-objective optimisation, also known as mining skypatterns. In this case multiple
measures are given and the Pareto-optimal solutions are sought (Kemmar et al., 2014;
Rojas et al., 2014). A generalisation from multi-objective to dominance relations also
encompasses condensed representations such as closed/maximal pattern mining and
finding relevant subgroups (Negrevergne et al., 2013).

Interestingly, most of these approaches use unmodified solvers and are still able to obtain
reasonable efficiency, especially in the case when many constraints are present (Guns et al.,
2011a). The key low-level constraint that these formulations use is a reified weighted sum
constraint over Boolean variables, where reified means that the truth value of the constraint is
reflected in a Boolean indicator variable. Notable in this respect is that one can implement a
CP solver over Boolean variables using the data structures used in itemset mining algorithms,
and achieve the same scalability as depth-first itemset mining, while also having the same
generality as other CP solvers have for itemset mining (Nijssen et Guns, 2010).

3 Constraint programming and sequence mining
A sequential pattern is an ordered list of events. This sequential ordering differs from the

traditional (unordered) interpretation of an itemset pattern. Furthermore, the same event can
reoccur multiple times in a sequential pattern.

A key property of any pattern mining method is the ability to compute the frequency of a
pattern ; this consists of verifying for each entry in the database whether the pattern occurs in
this entry (such an entry is often called a transaction. For itemsets, this corresponds to verifying
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that the pattern is a subset of the transaction, and for sequences that it is a subsequence of the
transaction.

Works that use constraint programming for constraint-based mining can be divided into
two camps, based on the representation of a sequence :

— Sequences with explicit wildcards. An example is 〈A, ∗, B〉 where ∗ is the wildcard.
This will match any transaction that contains anA, followed by a single arbitrary event,
followed immediately by event B. It would not match with a transaction such as
〈A,C,C,B〉, but it would match with 〈C,A,C,B〉. This problem can be formulated
in a way that is very similar to frequent itemset mining (Coquery et al., 2012) and
hence many of the same constraints and variations can be expressed, including frequent,
closed and maximal (Coquery et al., 2012) and top-k and relevant subgroups (Kemmar
et al., 2014).

— Sequences with implicit wildcards. This is the more traditional sequence pattern consi-
dered, where a pattern 〈A,B〉 is a subsequence of all of 〈C,A,B〉, 〈A,C,C,B〉 and
〈A,C, . . . , C,B〉 as there are implicit wildcards between all symbols. This is much
more difficult to express in a constraint solver (Métivier et al., 2013) as in the general
case, testing the subsequence relation for an individual transaction requires searching
over all possible matchings, which is worst-case exponential. Two ways to overcome
this are first, to add a global constraint that does this transparently to the CP solver,
and second to decompose the subsequence constraint and treat it for each transaction
as an independent subproblem that requires search (Negrevergne et Guns, 2015). The
former approach is most efficient as the same prefix-projection technique as used in
PrefixSpan (Han et al., 2001) can be used, including pruning of infrequent extensions.
Even better scalability can be obtained by having one global constraint that does this
for all transactions at once, instead of having one separate constraint for each transac-
tion (Kemmar et al., 2015).

The work on sequences shows us that itemsets are quite exceptional in that all constraints,
including condensed representations, can be expressed using standard constraints available in
CP. Only top-k, multi-objective optimisation and dominance relations require changes to the
solving procedure. On the other hand, to model sequence while obtaining reasonable solving
performance specialised constraints or search procedures need to be written. Furthermore, hi-
ding the subsequence check within a global constraint is most efficient but does not allow to
change the subsequence relation, e.g. to enforce a maximum gap between matching elements,
without changing the code implementing the constraint. There is hence still room for truly ge-
neric techniques for sequence mining, as well as for other structured pattern mining tasks such
as graph mining. See (Guns et al., 2016) for a more detailed discussion of the challenges and
possible solutions.

4 A language for generic pattern mining ?
Developing generic languages for pattern mining is a long standing quest (Bonchi et Luc-

chese, 2007; Soulet et Crémilleux, 2005; Blockeel et al., 2012; Métivier et al., 2012; Guns
et al., 2013). Many efforts have their roots in the idea of inductive databases (Mannila, 1997) ;
these are databases in which both data and patterns are first-class citizens and can be queried.
Most inductive query languages, e.g., (Meo et al., 1996; Imielinski et Virmani, 1999), extend
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SQL with primitives for pattern mining. They have only a restricted language for expressing
mining problems, and are usually tied to one mining algorithm. A more advanced develop-
ment is that of mining views (Blockeel et al., 2012), which provides lazy access to patterns
through a virtual table. Standard SQL can be used for querying, and the implementation will
only materialize those patterns in the table that are relevant for the query. This is realized using
a traditional mining algorithm.

More recent work has looked at high-level languages that have a straightforward transla-
tion into a declarative specification of the problem (Guns et al., 2013; Métivier et al., 2012).
At the same, many high-level modeling languages exist in the constraint programming litera-
ture (Van Hentenryck, 1999; Van Hentenryck et Michel, 2005; Frisch et al., 2008; Nethercote
et al., 2007).

The MiningZinc system (Guns et al., 2013) unifies both approaches by adopting the Mi-
niZinc constraint programming language (Nethercote et al., 2007), while at the same time
offering additional abstractions that often occur in pattern mining problems. The language is
independent of any solving technology which gives the MiningZinc system the ability to ve-
rify whether an existing algorithm exists that matches the problem formulation, or whether a
generic constraint solver should be used. In the former case, a highly efficient and scalable
specialized algorithm can be used. Furthermore, using rewrite rules, the system can detect that
a specialized can be used to solve part of the problem, and that the remaining constraints can
be post-processed. The result is a hybredisation of solving techniques, all of which is hidden
behind a high-level generic language.

5 Conclusions

In this talk and accompanying paper I have highlighted recent advances on bridging the
methodological gap between the fields of data mining and constraint programming. The over
aching goal is make data mining approaches more flexible and declarative, so as to make it easy
to change the model without requiring reimplementation work on the solver. Indeed, many of
the referenced approaches are more generic than existing systems.

On the other hand, there is often a tradeoff between generality and efficiency, and devising
methods that are both generic and scalable is the prime challenge. Many recent successes have
in some way hybridized data structures or algorithms from specialized methods into generic
constraint solvers. This is a very promising approach that brings the data mining and constraint
programming fields closer not only at the application level but also at the algorithmic level.
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Summary
In today’s data-rich world, pattern mining techniques allow us to extract knowledge from

data. However, such knowledge can take many forms and often depends on the application at
hand. This calls for generic techniques that can be used in a wide range of settings. In recent
years, constraint programming has been shown to offer a generic methodology that fits many
pattern mining settings, including novel ones. Existing constraint programming solvers do not
scale very well though. In this talk, I will review different ways in which this limitation has
been overcome. Often, this is through principled integration of techniques and data structures
from pattern mining into the constraint solvers.
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