
Finding Overlapping Communities in Networks Using

Propositional Satisfiability

Said Jabbour ∗, Nizar Mhadhbi∗

Badran Raddaoui∗∗ Lakhdar Sais ∗

∗CRIL - CNRS UMR 8188, University of Artois

F-62307 Lens Cedex, France

{jabbour, mhadhbi, sais}@cril.fr
∗∗SAMOVAR, Télécom SudParis, CNRS, Univ. Paris-Saclay

F-91011 Evry Cedex, France

badran.raddaoui@telecom-sudparis.eu

Résumé. Community detection is a fundamental issue for understanding the

structure of large and complex networks such as social, biological and informa-

tion networks. In this paper, we propose a new approach to detect overlapping

communities in large complex networks. We first introduce a parametrized no-

tion of a community, called k-linked community, allowing us to characterize

node/edge centered k-linked community with bounded diameter. Such commu-

nity admits a node or an edge with a distance at most k
2 from any other node of

that community. Next, we show how the problem of detecting node/edge cen-

tered k-linked overlapping communities can be expressed as a Partial Max-SAT

optimization problem. Then, we propose a post-processing strategy to limit the

overlaps between communities. An extensive experimental evaluation on real-

world networks shows that our approach outperforms several popular algorithms

in detecting relevant communities.

1 Introduction

Many complex interactions can be represented by networks, which are set of nodes connec-

ted by edges. Such connections might represent different type of relations between individuals

or entities. In social networks an edge represents some kind of social interaction, while in the

world of information networks, an edge represent logical connections such as hyper links and

citations. Nodes in networks can be organized into communities, which often correspond to

groups of nodes that share common properties, roles or functionnalities, such as functionally

related proteins, social communities, or topically related webpages.

One of the most important task when studying networks is that of identifying communi-

ties. Communities correspond to groups of nodes in a graph that share common properties or

have similar roles. Indeed, detecting and analyzing communities is of great interest in several

application domains, including clustering web clients who have similar interests, identifying

clusters of customers in the network of customers-products purchase relationships of online
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retailers (e.g. Amazon), etc. Several efficient algorithm for discovering communities in com-

plex networks have been proposed. Let us mention for example, the most popular algorithm

based on non-negative matrix factorisation Lee et Seung (2001), the spectral clustering me-

thods Newman (2006a) and the edge betweenness based approach Girvan et Newman (2002).

Some of them recuire several parameters such as the number of expected communities Lee

et Seung (2001); Newman (2006a), while others involve for example the computation of the

shortest paths between pairs of nodes Girvan et Newman (2002).

In this paper, we introduce a parametrized notion of communities, called k-linked commu-

nity, allowing us to characterize node/edge centered k-linked community admitting a node or

an edge with a distance at most k
2 from any other node of the community. This can be seen as

a way to look for communities of bounded diameter. Our approach is only dependent on this

single parameter k, and does not require any other knowledge about the network or about the

number of expected communities.

Our proposed overlapping communities detection framework is based on an appropriate

encoding of the centered k-linked community detection task as a partial maximum satisfia-

bility (Partial Max-SAT) optimisation problem. It allows us to benefit from the recent ad-

vances in propositional satisfiability and its optimisation variants. Finally, we propose a post-

processing strategy to limit the overlaps between communities. Our proposed framework fol-

lows the recent data mining research trend exploiting two powerful declarative models, namely

constraint programming and propositional satisfiability. Indeed, several data mining tasks in-

cluding pattern mining Guns et al. (2011) and clustering Gilpin et Davidson (2011) have been

modeled and solved using these two well-known declarative and flexible models.

The paper is organized as follows. After some preliminary definitions about propositional

satisfiability and community detection (Section 2), we describe our SAT-based framework for

overlapping community detection for both centroid node based community and centroid edge

based community (Section 3). An extensive and comparative experimental evaluation on many

real-world datasets is presented in Section 4. Finally, we overview the related works before

concluding.

2 Formal Preliminaries

In this section, we provide some preliminaries, key definitions and notational conventions.

2.1 Propositional Logic and SAT Problem

Let L be a propositional language defined inductively from a finite set PS of propositio-

nal symbols, the boolean constants ⊤ (true or 1) and ⊥ (false or 0) and the standard logical

connectives {¬,∧,∨,→,↔} in the usual way. We use the letters x, y, z, etc. to range over

the elements of PS . Formulas of L are denoted by A,B,C, etc. A literal is a propositional

variable (x) of PS or the negation of a variable (¬x). The two literals x and ¬x are called

complementary. A clause is a (finite) disjunction of literals, i.e., a1 ∨ . . . ∨ an. For every pro-

positional formula A from L, P(A) denotes the symbols of PS occurring in A. A Boolean

interpretation I of a formula A is a truth assignement of PS , that is, a total function from

P(A) to {0, 1}. A model of a formula A is a Boolean interpretation I that satisfies A, i.e.
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I(A) = 1. A formula A is satisfiable if there exists a model of A. We denote by M(A) is the

set of all models of A.

As usual, every finite set of formulas is considered as the conjunctive formula whose

conjuncts are the elements of the set. A formula in conjunctive normal form (CNF) is a (finite)

conjunction of clauses. The SAT problem consists in deciding wether a given CNF formula

admits a model or not. This well-known NP-Complete problem has seen spectacular progress

these recent years.

SAT has seen many successful applications in various fields such as electronic design au-

tomation, debugging of hardware designs, artificial intelligence, and data mining. Several SAT

extensions have been proposed to deal with optimisation problems. For example, the Max-SAT

Problem seeks the maximum number of clauses that can be satisfied. In this paper, we consider

one of these optimisation variants referred to as Partial Max-SAT problem. Partial Max-SAT

sits between SAT and Max-SAT problems. While SAT requires all clauses to be satisfied,

Partial Max-SAT relaxes this requirement by considering two kind of clauses, hard and soft.

Partial MaxSAT is the problem of finding an optimal assignment to the variables that satisfies

all the hard clauses, while satisfying the maximum number of soft clauses. Given n relaxable

clauses, the objective is to find an assignment that satisfies all non-relaxable clauses together

with the maximum number of relaxable clauses (i.e. a minimum number k of these clauses get

relaxed). Partial Max-SAT can thus be used in various optimization tasks, e.g. multiple pro-

perty checking, FPGA routing, etc. In these scenarios, simply determining that an instance is

unsatisfiable (UNSAT) is not enough. In this paper, we consider the Partial Max-SAT WPM3

solver, the winner of the last Max-SAT SAT evaluation (Ansótegui et al. (2015)).

2.2 Overlapping Community Detection

In this subsection, we discuss the classic problem of detecting overlapping community

structure in networks, , and review three traditional quality metrics.

A network is an undirected graph N = (V,E) where V is a set of nodes and E ⊆ V ×V is

a set of edges. We denote by n (respectively m) the number of nodes (respectively edges) in N .

The degree of a node u ∈ V , denoted du, is the number of edges connected to it. The length

of the shortest path between two nodes u, v ∈ V is called the distance between the nodes,

noted dist(u, v). Given an edge e = (u, v) ∈ E and a node w ∈ V , the distance between e
and w is defined as dist(e, w) = min{dist(u,w), dist(v, w)}. In graph theory, a community

is described as a set of nodes densely connected internally. In real-world networks, nodes are

organized into densely linked sets of nodes that are commonly referred to as network commu-

nities, clusters or modules. Notice that communities in networks often overlap as nodes can

belong to multiple communities at once. Network overlapping community detection problem

consists in dividing a network of interest into (overlapping) communities for intelligent ana-

lysis. It has recently attracted significant attention in diverse application domains. Identifying

the community structure is crucial for understanding structural properties of the real-world net-

works. Various methods have been proposed to identify the community structure of complex

networks (see Fortunato (2009); Leskovec et al. (2010b) for an overview).
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Quality Metrics :

Several measures have been proposed for quantifying the quality of communities in net-

works (see Leskovec et al. (2010a) for a comparative study of quality measures). In this paper,

we adopt three well-known metrics to assess the performance of our method :

Modularity.

The most widely used metric for measuring the quality of network’s partition into commu-

nities (without a ground-truth) is Newman’s modularity function Newman et Girvan (2004).

The idea of modularity-based community detection is to try to assign each node of the given

network to a community such that it maximizes the modularity value of the whole network.

Modularity quantifies the community strength by comparing the fraction of edges within the

community with such fraction when random connections between the nodes are made. Net-

works with high modularity have dense connections between the nodes within communities

but sparse connections between nodes in different communities. The modularity function has

several variants, but these variants share the same principle. Without the loss of generality,

we use the following equation of modularity, an extension of Newman’s modularity function

designed to support overlapping communities proposed in Shen et al. (2009). For the given

community partition of a network N = (V,E) with m edges, an extended modularity EQ is

given by :

EQ =
1

2m

∑

C∈CN

∑

u,v∈C

1

OuOv

[

Auv −
dudv
2m

]

with CN the set of communities in N ; Ou the number of communities to which the node

u belongs and Auv is the element of the adjacency matrix representing the network.

F1 score.

Let N = (V,E) be a network, and Ĉ (respectively C∗) the set of (respectively ground

truth) communities associated to N . The average F1 score measure aims to quantify the level

of correspondence between C∗ and Ĉ. More precisely, we need to determine which Ci ∈ C∗

corresponds to which Ĉi ∈ Ĉ. The F1 score is defined as the average of F1 score of the

best matching ground-truth community to each detected community, and the F1 score of the

best matching detected community to each ground-truth community Yang et Leskovec (2013).

More formally, this function is defined as follows :

1

2





1

|C∗|

∑

Ci∈C∗

F1(Ci, Ĉg(i)) +
1

|Ĉ|

∑

Ĉi∈Ĉ

F1(Cg
′
(i)
, Ĉi)





where the best matching g and g′ is defined as follows : g(i) = argmax
j

F1(Ci, Ĉj), g
′(i) =

argmax
j

F1(Cj , Ĉi), and F1(Ci, Ĉj) is the harmonic mean of Precision and Recall.
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Normalized Mutual Information (NMI).

This metric adopts the criterion used in information theory to compare the detected commu-

nities and the ground-truth communities. Normalized Mutual Information has been proposed

as a performance metric for community detection (see Lancichinetti et al. (2009) for details).

It provides a real number between zero and one that gives the similarity between two sets of

sets of objects. The Normalized Mutual Information is written as :

H(X) +H(Y )−H(X,Y )

(H(X) +H(Y ))/2

where H(X)(H(Y )) is the entropy of the random variable X(Y ) associated to the partition

C ′(C ′′), whereas H(X,Y ) is the joint entropy. This variable is equal 1 only when the two

partitions C ′ and C ′′ are exactly coincident.

3 A SAT-based Framework for Community Detection

Fundamentally, communities allow us to discover groups of interacting objects and the re-

lations between them. A community (also referred to as a cluster) is a set of cohesive nodes

that have more connections inside the set than outside. In this section, we propose an appro-

priate encoding of the community detection task as a SAT optimization problem. Proximity

between nodes have been expressed as direct edges expressing formally a direct relation. Indi-

viduals can be grouped into the same cluster even if they are not linked directly. Relationships

between individuals can be expressed via some proximity conditions. For instance, individuals

having much common friends could be considered as very closed to each other. Consequently,

the definition of individuals proximity is clearly a fundamental issue, as it have a great impact

on the outcome. Next, we establish the main definitions which will be used to formulate our

problem. Let us first start by introducing the notion of k-linked community as follows :

Definition 1 (k-linked community) A community is k-linked if the nodes are pairwise k-

linked, i.e., the distance between each two nodes is less or equal than k.

According to Definition 1, a k-linked community has a diameter less or equal than k. Now,

to simplify the encoding of the problem of discovering overlapping communities, we focus

on the following kinds of k-linked communities called k-linked centered communities : those

having a centroid node or centroid edge that possesses a distance at most k
2 from each other

node of the community.

Definition 2 (Node/Edge Centered k-linked Community) Let N = (V,E) be a network

and k > 1 a positive integer. A community C ⊆ V is node (resp. edge) centered k-linked

community of N iff there exists c ∈ C (resp. e = (u, v) ∈ E with u, v ∈ C) s.t. ∀ w ∈ C,

dist(c, w) ≤ k
2 (resp. dist(e, w) ≤ k

2 ).

Obviously, a node centered k-linked community is an edge centered k-linked community,

while the converse is not true. Note also that a k-linked community is not necessarily a centered

k-linked community. A counter-example consists of the network N = (V,E) where V =
{x1, . . . , x8} and E = {(x1, x2), (x2, x3), (x3, x4), (x5, x6), (x6, x7), (x7, x8), (x1, x5),
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(x4, x8)}. Then, C = V is a 4-linked community, while there is neither a node xi ∈ V nor

edge e ∈ E with distance at most 2 from all the remaining nodes of C.

Lemma 1 Let N = (V,E) be a network, C ⊆ V a community and an integer k > 1. If C is

a centered k-linked community, then C is also a k-linked community.

Now, based on the notion of centered k-linked community, community detection is defined

as an optimization problem, solving Partial Max-SAT. To do so, our starting point is to find a

set of centroids S in the given network. The next step is to formed the communities around

the centroids based on a predefined parameter k which represents the diameter of the commu-

nities. Clearly, we distinguish the following two cases : k-linked node (resp. edge) centered

communities corresponding to an even (resp. odd) value of k.

Next, we propose two appropriate reformulations as an optimization problem for the com-

munity detection problem corresponding to node and edge centered k-linked communities,

respectively. To achieve this, propositional variables are used for representing the network. In-

deed, we associate each node u (resp. edge e) with a propositional variable denoted xu (resp.

ye) where xu, ye ∈ {0, 1}. The key idea is that the variables assigned to 1 represent the cen-

troids nodes (resp. edges), i.e., Sv = {u ∈ V | I(xu) = 1} (resp. Se = {e ∈ E | I(ye) = 1}).

We now describe our SAT-based encodings using such propositional variables.

3.1 Node Centered k-linked Community

Our encoding consists of a set of constraints. The first propositional formula expresses the

fact that if a node u is a centroid (I(xu) = 1), then the nodes with a distance at most k
2 from u

are placed to the same community that possesses u as a centroid.

∧

u∈V

(xu →
∧

v∈V |dist(u,v)≤ k

2

¬xv) (1)

Let us remark that constraint (1) can be expressed by a set of binary clauses :

∧

u∈V

∧

v∈V |dist(u,v)≤ k

2

(¬xu ∨ ¬xv)

After finding the centroids, we still have to determine whether a node u belongs to com-

munity C or not depending on the value of k. To achieve this, we use the following formula

that affects nodes of the network to communities where they belong to, i.e., nodes that have a

distance at most of k
2 from the centroid.

∧

u∈V

∨

v∈V |dist(u,v)≤ k

2

xv (2)

Proposition 1 If the constraints (1) ∧ (2) are satisfied, then for all u 6∈ Sv there exists v ∈ Sv

s.t. dist(u, v) ≤ k
2 .

Proposition 1 ensures that if (1) ∧ (2) admits a model I, then the nodes corresponding

to the variables assigned to 1 ({u ∈ V | I(xu) = 1}) are the centroids and the network can
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be partitioned into |S| communities. The communities can then be constructed by finding the

nodes with a distance at most k
2 from each centroid.

Obviously, the formula (1) ∧ (2) may admits many candidate solutions (i.e. models). Ho-

wever, choosing an arbitrary model do not always guarantee a best partition of the network

into communities. To alleviate this problem, we will consider an objective function to optimize

over the space of solutions. Then, the node centered k-linked community detection problem

can be formulated as the following optimisation problem :

min/max
∑

u∈V

xu subject to (1) ∧ (2) (3)

3.2 Edge Centered k-linked Community

Now, to derive the formulation of edge centered k-linked community detection problem,

we use similar reasoning as for node centered k-linked community, except that we consider

centroid edges instead of centroid nodes. To do so, a community is built around an edge e =
(u, v) by considering nodes with a distance at most k

2 from the edge e. This is equivalent

to partition the set of edges into modules and from that modules we can deduce the set of

communities of nodes.

In the same way as for centroid nodes, the following formula expresses the fact that if an

edge e = (u, v) is a centroid edge (I(ye) = 1), then the nodes with a distance at most k
2 from

u or v are assigned to 0.

∧

e=(u,v)∈E

(ye →
∧

e′∈E|dist(e′,u)≤ k

2
||dist(e′,v)≤ k

2

¬ye′) (4)

Let us now introduce the following formula that affects nodes of the network to their asso-

ciated communities, i.e. nodes that have a distance of k
2 from the centroid edge e.

∧

e=(u,v)∈E

∨

e′∈E|dist(e′,u)≤ k

2
||dist(e′,v)≤ k

2

ye′ (5)

After fixing the centroids edges, the constraint 5 allows to identify whether a node u be-

longs to a community C or not from the value of k.

Similarly, to improve the quality of the detected communities, our edge centered k-linked

community detection problem is formulated as the following optimisation problem :

min/max
∑

e∈E

ye subject to (4) ∧ (5) (6)

We will use the notation CDSATk
min/max to denote the optimization problems (3) and (6).

Example 1 Let us consider the undirected network N = (V,E) depicted in Figure 1. Setting

k = 4 can lead to the following solution of CDSAT4
max : I = {¬x1,¬x2,¬x3,¬x4,¬x5, x6,

¬x7, x8,¬x9,¬x10,¬x11}. So for that solution, N can be partitioned into the two communi-

ties C1 = {1, . . . , 6, 7, 11} and C2 = {1, 2, 5, 6, 7, . . . , 11}. In contrast, CDSAT4
min leads to

one community with centroid x1 and containing all the nodes of N .
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FIG. 1 – A simple undirected network

3.3 Overlapping Enhancement

As said before, once the node/edge centroids are found, the communities are formed ar-

round them based on a predefined parameter k. As a result, some nodes can belong to multiple

communities as illustrated in Example 1. However, such overlapping can be huge and not signi-

ficant enough w.r.t. real communities. To overcome this drawback and to allow for an accurate

partition of the network, we propose a simple but effective overlaps reduction technique in or-

der to correctly identify dense community overlaps. Starting from a set of communities, each

overlapping node will be assigned to its closest communities according to its distance from the

centroids of these communities.

Example 2 Let us consider again the network N = (V,E) of Figure 1. By enhancing the

overlapping, the two communities are reduced to C1 = {1, . . . , 6} and C2 = {1, 7, . . . , 11}.

Algorithm 1 describes the general feature of our SAT-based node centered k-linked com-

munity detection procedure 1. The algorithm takes as input the network and even integer k and

returns a set of overlapping communities. It proceeds as follows : First, we generate the cor-

responding optimization problem that can be represented as a Partial MaxSAT problem (line

1). Then, a state-of-the-art Weighted Partial MaxSAT solver WPM3 is used to get an optimal

solution (i.e. model) I. Next, the centroids are determined from the obtained model (lines 4-7).

Using such centroids, the next step is to build communities by finding the nodes with a dis-

tance at most k
2 from each centroid. Finally, the cleaning step is called to improve the quality

of detected communities (lines 11-13).

4 Empirical Evaluation

4.1 Experiment Settings

In this section, we present an experimental evaluation of our proposed approach. It was

conducted on fourteen networks that cover a variety of application areas (e.g. social network,

1. Algorithm 1 can be slightly modified to deal with edge centered k-linked community detection problem.
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Algorithme 1 : CDSATk
min/max

Input : A networkN = (V,E) and an integer k > 1
Output : A set of overlapping communities

1 Φ = encodeToOpt(k,G);

2 I = solve(Φ) ;

3 S ← ∅;
4 for ux ∈ I do
5 if I(ux) == 1 then
6 Cu ← {u};
7 S ← S ∪ Cu

8 end

9 end
10 for vx ∈ I do
11 for Cu ∈ S do

12 if dist(u, v) ≤ k

2
then Cu ← Cu ∪ {v} ;

13 end

14 end
15 for Cu, Cv ∈ S × S do
16 for w ∈ V do
17 if dist(w, u) < dist(w, v) then Cv ← Cv \ {w} ;

18 end

19 end
20 return S

collaboration network, political network, game network, purchase network and word adjacen-

cies network (Newman (2006b))) and are briefly described in Table 1 (columns 1 and 2). Some

of these networks have ground-truth communities as presented in column 2 of Table 2. We

have also chosen three large networks (Facebook, DBLP, and Amazon taken from SNAP

(Leskovec et Krevl (2014))) to show the scalability of our model.

We evaluate the performance of our approaches by comparing them with the following

most prominent state-of-the-art overlapping community detection algorithms :

(i) Community-Affiliation Graph Model (AGM) (Yang et Leskovec (2012)),

(ii) Clique Percolation Method (CPM) (Adamcsek et al. (2006)),

(iii) Cluster Affiliation Model for Big Networks (BIGCLAM) (Yang et Leskovec (2013)), and

(iv) Communities from Edge Structure and Node Attributes (CESNA) (Yang et al. (2014)).

For the CPM algorithm, we use the cliques of size equal to 3. For BIGCLAM method, user

can specify the number of communities to detect, or let the program determine the number

of communities from the topology of the network. We opt for the case where the number of

communities is not fixed in advance.

The proposed system, referred to as CDSATk
min/max, was written in Python. Given an

input network as a set of edges, our algorithm starts by generating the corresponding optimi-

zation problem represented as a Partial MaxSAT problem. To solve this problem, we consider

the state-of-the-art Weighted Partial MaxSAT solver WPM3 (best solver at the last MaxSAT

competition 2) Ansótegui et al. (2015). As finding the optimal solution is NP-hard, in our ex-

periment, we consider the first solution (not necessarily optimal) returned by the solver WPM3.

For our experimental study, all algorithms have been run on a PC with an Intel Core 2 Duo (2

GHz) processor and 2 GB memory. We imposed 1 hour time limit for all the methods. Last,

we use the symbol (-) in Tables 1 and 2 to indicate that the method is not able to scale on the

considered network under the time limit.

2. http ://maxsat.ia.udl.cat/introduction/
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4.2 Choosing the Best Value of the Diameter

Our CDSATk
min/max algorithms take as input a network and a positive integer k and re-

turn a set of overlapping communities. In order to determine the best diameter k, we run

CDSATk
min/max on the fourteen considered networks, while varying k from 3 to 6. The Fi-

gure 2 summarises the relationship between the average modularity and k. As Figure 2 reveals,

the best average modularity is obtained by CDSAT4
min and CDSAT4

max with a value of 0.421
and 0.432, respectively. We also observe that the average modularity obtained by both algo-

rithms decreases beyond k = 4. Overall, for both algorithms the best average modularity is

obtained for k = 4. These performances are relatively close. This can be explained by the fact

that real-world social networks possess small (average or effective) diameters (e.g. Comellas

et al. (2000)). This can be related to the property of the small-world phenomenon observed

by several authors on real networks (e.g. Watts et al. (1998)). Also, setting the parameter k is

particularly useful for community detection, as it allows for controlling the size of the resulting

communities.
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FIG. 2 – Average modularity for CDSATk
min/max

4.3 Comparison with Baseline Algorithms

Results on modularity metric. Table 1 reports the performance comparison between our

CDSAT4
min/max approaches and the considered methods. Experiments show that our methods

outperform every baseline, in most cases, by an interesting margin as shown by the average

modularity reported in the last line of Table 1. We observe that across all datasets and modula-

rity metric, CDSAT4
min yields the best performance in 8 out of 14 networks. We also note that

CDSAT4
min shows a high margin in performance gain against the baselines in two large net-

works DBLP and Amazon, and in a collaborations network such as Coauthorship (New-

man (2006b)). In terms of average performance, CDSAT4
min outperforms CPM by 111.55%,

BIGCLAM by 26.42%, and CESNA by 40.80%. Similarly, we note that CDSAT4
max out-

performs all the other methods in 7 out of 14 datasets. In terms of average performance,

CDSAT4
max outperforms CPM by 117.08%, BIGCLAM by 29.72%, and CESNA by 44.48%.

We also observe that CDSAT4
max gives an important improvement against the baselines in two
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large networks Facebook, DBLP, and also in a collaborations network like Coauthorship.

On the Lemis (Knuth (1993)), Power grid (Watts et Strogatz (1998)), Pilgrim (Brian

et al. (2013)), and Jazz (Gleiser et Danon (2003)) datasets, our methods remain relatively

competitive with the best baseline. A possible explanation for this phenomenon is that the

WPM3 solver don’t return the optimal solution for these datasets. Overall, our methods outper-

form BIGCLAM, which is the most competing algorithm, on all large real datasets.

Networks nodes/edges AGM CPM BIGCLAM CESNA CDSAT4

min
CDSAT4

max

Dolphin 62/159 −0.040 0.304 0.053 0.095 0.438 0.297
Karate 34/78 0.200 0.230 0.195 0.180 0.310 0.311
Risk map 42/83 0.415 0.488 0.194 0.504 0.571 0.528
Lemis 77/254 0.162 0.205 0.444 0.311 0.064 0.419
Word-adj 112/425 0.139 0.031 0.154 0.111 0.175 0.098
Football 115/615 0.222 0.199 0.343 0.390 0.286 0.404
Facebook 4039/88234 − − 0.391 0.539 0.449 0.701
DBLP 317080/1049866 − 0.293 0.216 0.202 0.520 0.436
Amazon 334863/925872 − 0.195 0.341 0.430 0.616 0.502
Books 105/441 0.366 0.265 0.308 0.255 0.439 0.345
Power grid 4941/6594 − 0.007 0.840 0.586 0.679 0.547
Coauthership 1462/2742 0.619 0.456 0.679 0.031 0.923 0.852
Pilgrim 34/128 0.368 0.096 0.415 0.321 0.312 0.407
Jazz 196/2742 0.310 0.022 0.099 0.231 0.112 0.208
Average N/A N/A 0.199 0.333 0.299 0.421 0.432

TAB. 1 – Modularity based performance of methods on fourteen datasets.

Results on ground-truth communities. After finding communities in a given network, we

can gauge the performance of each community that an algorithm has discovered and whether

a ground-truth community has been successfully identified. Table 2 summarizes the evalua-

tion results, with F1 scores of all algorithms on each network. Interestingly, it can be seen

that CDSAT4
min and CDSAT4

max produce more accurate average w.r.t. the ground-truth setting

than all the other baseline algorithms. In terms of average performance, CDSAT4
min outper-

forms CPM by 16%, BIGCLAM by 22%, and CESNA by 35.05%. Moreover, notice that

CDSAT4
max outperforms CPM by 6.49%, BIGCLAM by 12%, and CESNA by 23.98%. In

the cases of Karate (W.W. (1977)), Risk map (Cheng et al. (2014)), and DBLP data ins-

tances, CDSAT4
min and CDSAT4

max achieve a closely gain in the F1 score compared to the best

baseline (CPM in this case).

To enlarge the criteria of comparison and offer some intuition about why our methods

work well, we propose also to compare the set of considered approaches according to NMI

metric. The resulats are reported in Table 3. As we can see from our experimental results,

CDSAT4
min and CDSAT4

max algorithms achieve the best average performance. Compared with

the other baselines, ours consistently produces more accurate average with respect to the

ground-truth setting among all the other algorithms at detecting overlapping communities.

Overall, CDSAT4
min/max algorithms outperform the baselines in nearly all cases. On average,

CDSAT4
min outperforms CPM by 72.64%, BIGCLAM by 95.72%, and CESNA by 57.08%.

Likewise, CDSAT4
max outperforms CPM by 54.71%, BIGCLAM by 75.40%, and CESNA by

40.77%. Broadly speaking, our CDSAT4
min and CDSAT4

max methods give superior overall per-

formance to the four community detection algorithms.

As a summary, experimental results confirm that CDSAT4
min/max methods achieve the ove-

rall best performance in terms of the accuracy of the detected overlapping communities.
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Networks Communities AGM CPM BIGCLAM CESNA CDSAT4

min
CDSAT4

max

Dolphin 2 0.120 0.579 0.628 0.100 0.749 0.659

Karate 2 0.864 0.857 0.629 0.663 0.847 0.851

Risk map 6 0.641 0.884 0.694 0.842 0.779 0.769

DBLP 13477 − 0.596 0.370 0.310 0.470 0.483

Amazon 75149 − 0.519 0.498 0.642 0.695 0.399

Books 3 0.684 0.557 0.549 0.591 0.804 0.652

Pilgrim 4 0.773 0.427 0.835 0.652 0.785 0.892

Average N/A N/A 0.631 0.600 0.542 0.732 0.672

TAB. 2 – F1 Score using ground truth.

Networks Communities AGM CPM BIGCLAM CESNA CDSAT4

min
CDSAT4

max

Dolphin 2 0.434 0.306 0.195 0.153 0.296 0.173

Karate 2 0.413 0.197 0.204 0.217 0.621 0.337

Risk map 6 0.196 0.247 0.405 0.649 0.492 0.657

DBLP 13477 − 0.233 0.031 0.012 0.175 0.112

Amazon 75149 − 0.178 0.015 0.019 0.173 0.190

Books 3 0.320 0.162 0.102 0.152 0.421 0.164

Pilgrim 4 0.339 0.166 0.360 0.433 0.389 0.669

Average N/A N/A 0, 212 0, 187 0, 233 0.366 0.328

TAB. 3 – NMI using ground truth.

Evaluating scalability. Finally, we evaluate the scalability of the different community detec-

tion methods by measuring the CPU time (see Table 4). From the results, it can be seen that

our algorithms make few seconds to generate all communities for small networks. However,

the CPM, BIGCLAM and CESNA baselines are faster than our methods for small networks

(up to 200 nodes). We can observe that CDSAT4
min and CDSAT4

max are third-fastest method

overall, when the network becomes larger. Interestingly, we also notice that our algorithms are

the second-fastest methods, next BIGCLAM, for DBLP and Amazon.

Networks AGM CPM BiGCLAM CESNA CDSAT4
max CDSAT4

min

Dolphin 6.77 0.09 0.24 0.07 14 8

Karate 35 0.07 0.29 0.07 11 7.15

Risk map 62 0.09 2.84 0.59 38 17

Lemis 200 0.10 0.55 0.09 16 12

Word-adj 60.35 0.09 0.97 0.13 60.60 11

Football 47.71 0.08 1.78 0.13 120.20 420

Facebook > 1h > 1h 240.38 4.81 360.30 480.7

DBLP > 1h 3240 60.56 900.34 720.50 780.40

Amazon > 1h > 1h 60.09 1200.49 780.20 900

Books 19.83 0.12 2.71 0.10 14.35 60.20

Power grid > 1h 0.66 0.81 4.48 420.15 480.25

Co-authership science 360.17 0.07 14.08 0.05 360.58 360.20

Pilgrim 0.61 0.09 0.35 0.07 8.2 7

Jazz 60.02 0.09 2.84 0.59 360.12 120

TAB. 4 – Comparison in terms of running Time (s).
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5 Conclusion

In this paper, we developed a new framework for detecting overlapping community struc-

ture of real-world networks. Our method is based on a partition of the network into modules

with bounded diameters. We have shown that the problem of centered k-linked community de-

tection can be expressed as a Partial Max-SAT optimization problem. Extensive experiments

based on 14 networks from different sources showed that our approach outperforms the state-

of-the-art methods in accurately discovering network communities. These performances are

obtained while looking for the first non necessarily optimal solution of the underlying optimi-

sation problem.

As a future work, we intend to develop a parallel version to even improve the performance

of our optimisation based approach. We also plan to extend our proposed framework to deal

with dynamic community detection in networks.
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Summary

La détection de communautés est devenue un problème fondamental permettant la com-

préhension de la structure des réseaux complexes tels que les réseaux sociaux, biologiques ou

encore les réseaux d’informations. Dans cet article, nous proposons une approche pour dé-

tecter les communautés chevauchantes dans les grands réseaux complexes. Nous introduisons

d’abord une nouvelle notion de communauté paramétrée dite communauté k-liée. Cela nous

permettrait de caractériser les communautés k-liées centrées nœud/arête de diamètre borné.

Une telle communauté admet un noeud ou une arête avec une distance au plus k
2 des autres

noeuds de la même communauté. Ensuite, nous montrons comment le problème de détec-

tion de communautés chevauchantes k-liées centrées nœud/arête peut être exprimé sous forme

d’un problème d’optimisation Max-SAT partiel. Puis, nous proposons une stratégie de post-

traitement pour réduire le chevauchement entre les communautés. Finalement, une évaluation

expérimentale extensive sur des réseaux réels montrent que notre approche améliore significa-

tivement plusieurs algorithmes de l’état de l’art de détection de communautés.

✲ ✽✵ ✲


