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Abstract. NoSQL systems support new data models, which propose alternative

models to the well-known relational models, and query languages. Due to the

lack of a well-accepted logical model for Data Warehouses (DWs), some prelim-

inaries works proposes extensions/redefinition of relational star and snow-flake

schemata for NoSQL families. However, many other modeling possibilities re-

main unexplored, and it is difficult to compare these proposals because of the

lack of a well-recognized benchmarking framework for DWs. In this paper, we

propose a generic extension of the relational Star Schema Benchmark, called

GenSSB, to handle any kind of DBMS in terms of logical models. We validate

our framework by instantiating GenSSB for some different logical models and

DBMSs.

1 Introduction and motivation

Data Warehouses (DWs) and OLAP systems with their implementation in relational and

multidimensional architectures have been widely studied in the last 30 years (Kimball and

Ross, 2002). Nowadays, DWs and OLAP systems have reached a great maturity having differ-

ent kind of applications in several domains such as marketing, health, agriculture, etc. Concep-

tual, logical and physical issues have been extensively investigated by academic and industrial

communities. Several conceptual models based on ER, UML and other formalisms have been

proposed, but no standard has been defined yet. Some logical models have been also proposed.

Star and snowflake schemas are actually recognized as the de-facto standard logical models for

DWs. The star schema denormalizes dimensional attributes to avoid expensive join operators.

The snowflake schema is similar to the star schema except that dimensions are normalized into

multiple related tables.

Based on these logical models, some optimization techniques (such as index, materialized

views, fragmentation), and administration/tuning tools have been proposed. Therefore, specific

benchmarks for relational DW (such as SSB, TPC-DS, etc.) (O’Neil et al., 2009) have been

designed over these logical models to evaluate and compare performance of these optimization

techniques.
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However, some new NoSQL Database Management Systems (DBMSs) have been recently

proved to be effective Business Intelligence solutions. Different families of NoSQL DBMSs

exist: Key-value, Extensible record, Document and Graph. A Key-value database is a col-

lection of data without a schema and organized as a collection of key-value pairs. Data is

accessed using the key and its value represents data. An Extensible record database represents

data with tables where each row can present different attributes (different columns). A Docu-

ment database stores information as documents having a complex structure. A Graph database

is suited for applications in which there are more interconnections between the data like social

networks.

Due to the lack of a well-accepted NoSQL logical model for DWs, some preliminaries

works propose extensions/redefinition of relational star and snowflake schemata. However,

other modeling possibilities remain unexplored, and it is difficult to compare these proposals

because of the lack of a standard logical model for NoSQL DWs, and its associated benchmark.

This shows the need for a framework to compare different logical multidimensional models

with their possible NoSQL implementations.

Relatively little attention has been paid in the literature to benchmarks for NoSQL DWs

(Qin and Zhou, 2013; Shah et al., 2014). The CNSSB benchmark (Dehdouh et al., 2014)

is a benchmark proposed to explicitly support two column-oriented logical models. SSB+

(Chevalier et al., 2015) considers both the NoSQL column-oriented and the document-oriented

models. CNSSB and SSB+ are based on some new logical models for column and document-

oriented DWs.

To best of our knowledge, all existing works for benchmarking DWs are composed of:

(i) a data and query generator that are based on a particular logical model, and (ii) a set of

methods for writing generated data into particular DBMSs. To conclude, the main limitation

of the above described benchmarks is that they are strongly coupled with a particular logical

design of the DW, for example the star-schema for the relational DBMSs in SSB, the MLD0

for document DBMSs in SSB+ (Chevalier et al., 2015), etc. Therefore, it is not possible use

them to evaluate new logical multidimensional models over NoSQL DBMSs.

To deal with this problem, we propose a generic extension of the relational Star Schema

Benchmark, called GenSSB, to handle any relational and NoSQL logical multidimensional

model. GenSSB is defined as a simple C library. Finally, we present a comparative study

between different models with respect to the loading time of data generated by GenSSB. The

paper is organized in the following way: Section 2 presents GenSSB; experiments of GenSSB

are described in Section 3, which followed by conclusion and future work.

2 GenSSB Benchmark

In this section, we describe our framework for benchmarking model and DBMS indepen-

dent DWs, called GenSSB. Our proposal extends the Star Schema Benchmark (SSB) (O’Neil

et al., 2009). SSB is based on a relational star schema extending TPC-H for supporting OLAP

queries. SSB is defined to analyze sales per PART, SUPPLIER, CUSTOMER and DATE. It

defines a set of representative OLAP queries. For example the "Q2" queries of SSB find for

the revenue for some product classes, for suppliers in a certain region, grouped by product

classes. The SSB data generator uses a parameter called Scale Factor (SF) to generate data at

different size. Data is generated proportionally to scale factor. For example, SF=1 corresponds
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to 6∗10
6 tuples of the fact table, and SF=50 corresponds to 3∗10

8 tuples. GenSSB generalizes

SSB by moving it from the logical level to the conceptual level. GenSSB is composed of: (i)

a conceptual multidimensional model and (ii) a data generator that takes as in inputs the same

Selectivity Factor parameter of SSB. Contrary to SSB, GenSSB generated data is not associ-

ated to any logical model, but to a conceptual multidimensional model. This allows GenSSB

to be independent from the used logical model and the DBMS. Indeed, the implementation of a

particular logical model in a specific DBMS is in charge of the user of the benchmark. For ex-

ample, once data have been generated, a user can provide writing functions for generated data

in: the star schema with PostgreSQL, and/or the MLD0 and MLD1 with MongoDB. MLD0

and MLD1 are two logical models for document DBMS proposed by (Chevalier et al., 2015).

Using GenSSB, three criteria can be used to evaluate the logical models and their imple-

mentation in different DBMSs: (i) Size: the size of data generated, (ii) Load: the time needed

to load it into the DBMS, and (iii) Query: the query processing time. Moreover, GenSBB

allows a comparative study among logical models belonging to the same family or not.

Therefore, we define two classes of evaluation: (i) Intra-Family and (ii) Inter-Family.

Intra-Family class contains all models that belong to the same DBMS family, for example for

the relational DBMS family it allows compare the star schema over Postgres and Oracle, or for

the document DBMS family a study can concern the MLD0 for MongoDB and CouchBase.

In details, Intra-Family class contains two groups: Intra-DBMS and Inter-DBMS, which allow

for comparing the same DBMS and different DBMSs respectively. An example of Intra-family

evaluation with Intra-DBMS is: perform loading time of data generated into MongoDB using

Json file with and without an index. An example of Intra-family evaluation with Inter-DBMS

is to perform loading time of data generated (Json file) into MongoDB and CoucheBase.

Inter-Family contains logical models that belong to different families. For the Inter-Family

class, only the Inter-DBMS group can be defined. For example, it is possible to compare the

star schema over Postgres and the MLD0 over MongoDB.

As previously described GenSSB covers an important set of possibilities. Nowadays, with

the advent of NoSQL solutions, GenSSB appears mandatory for the choice of the right solu-

tion for the right application for the current skills of the enterprise. Indeed, some years ago,

relational DBMSs where the only possibility offered to BI enterprises that decided to use a

particular DBMS solution (for example Postgres) according to the skills of its employees (for

example Postgres and MySQL) and the results of the DW benchmarks (e.g. SSB). Nowadays

with the proliferation of NoSQL DBMSs (HBase, MongoDB, Neo4j, etc.), BI developers must

take into account the skills’ employees, but they cannot use existing DW benchmarks to choice

the right DBMS for their application. Therefore, GenSSB can be used for easily and fast com-

paring all possible solutions before to start the BI project development. The overall process for

DW implementation using GenSSB is shown in Figure 1.

Therefore, an easy and fast usage of the benchmark is one new important mandatory re-

quirement that we have taken into account for the definition of GenSSB, as shown in Sec 3.3.

Conceptual model: As previously described, GenSSB is not based on a particular logical

model, but it generates data based on the conceptual abstraction of the SSB model. The con-

ceptual multidimensional model is presented using the ICSOLAP UML profile (Boulil et al.,

2015). We use ICSOLAP since it is based on UML, which is a standard and it can be easily

understood.

The Figure 2 presents the conceptual model of our case study based on the SSB bench-
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FIG. 1 – Project development methodology including GenSSB

mark (O’Neil et al., 2009) using ICSOLAP. It consists of a fact LINEORDER with many

measures: QUANTITY, REVENUE, TAX...etc. For reasons of readability we present only

quantity. The dimensions are: PART, DATE, CUSTOMER and two spatial dimensions with

the spatial levels: (SUPPLIER, CITY, NATION and REGION) and (CUSTOMER, CITY, NA-

TION and REGION). Using the above DW, it is possible to answer OLAP queries that provide

the total revenue of each supplier per year, the total revenue of each of supplier per nation and

year.

Data generator: The data generator has been implemented in C language extending the

SSB implementation. GenSSB’s data generator adapts and adds data structures that are not

associated to the relational star schema, but it implements the conceptual model previously

described (Figure 2). We have added the structure "nlineorder_t" representing facts and

modified the structure of the dimensions replacing the keys (primary keys) by some optional

identifiers (XXX_ID), in order to improve performance. These data structures are fulfilled

by the MK_XXX functions of SSB.

Once data is generated it must be inserted in a logical schema over a particular DBMS.

In order to grant generality, we define this function as a C prototype function: PrintDW

(nlineorder_t *t, File *F). A function prototype is a declaration of a function that speci-

fies the function’s name and type signature (cardinality, data types of parameters, and return

type), but omits the function body. Inputs of PrintDW are: (i) nlineorder_t ∗ t : fact and

dimensions data previously generated using the MK_XXX functions, and (ii) File ∗F : file

where data is written (such as .TBL, .JSON, .CSV etc.). Then, the PrintDW function must be

implemented for each logical model and DBMS chosen for the experiments.

3 Experiments and validation

In this section, we present the implementation of GenSSB using a real case study (Sec 3.1).

In particular, we detail the different implementations of the PrintDW function of GenSSB for
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FIG. 2 – GenSSB conceptual model

various logical models and DBMSs (Sec 3.3). We also present some results applied to our case

study (Sec 3.4).

3.1 Case study overview

Our case study concerns the monitoring of electric use in dairy production (Bimonte et al.,

2013). In particular, sensors data coming from dairy equipment is warehoused to be analyzed

in a quasi-real-time approach. Data is collected each 10 seconds. A data warehouse repre-

senting electric use has been designed in (Bimonte et al., 2013). This DW should allow the

analysis of weekly data. Therefore, as defined in (Bimonte et al., 2016) warehoused data is

loaded and dropped at the beginning and the end of the week, respectively. According to this

approach, data loading must be accomplished in a short time (3-4 hours) in order to allow the

good working of the overall system. In (Bimonte et al., 2016) we study a relational DBMS (i.e.

Postgres) implementation of the DW. Therefore, in this work we investigate other DW solu-

tions trying to improve loading time, and consequently allow the usage more sensors data. In

particular, according to the skills of our engineer team, we are interested to implement GenSSB

for supporting the following DBMSs: Postgres, CouchBase, C assandra and MongoDB, and

some existing multidimensional logical models. Thus, GenSSB allows us to fast obtain pre-

liminaries results comparing these solutions, without implement data generators from scratch,

as described in Figure 1.
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3.2 Case study experimental setup

In the context of our case study, the tests were performed using the following configuration

setup: Experiments were conducted on a virtual machine with a 6 VCPU, 32 GB of main

memory, a 9 TB hard disk under Windows Server 2012. Storage processing were performed

using CouchBase (version 4.6.0), MongoDB (version 2.4.1), Postgres (version 9.2), Cassandra

(version 3.9).

The logical models used for our case study are MLD0, MLD1, MLD2 for document DBMS

(MongoDB and CouchBase), star schema for relational DBMS (Postgres) and CNSSB model

pour column DBMS (Cassandra).

Using this configuration, we will evaluate the following experiments scenario : For first we

compare the three families (Experiment 1) DBMSs. Then, we compare the different logical

models for one family (Experiment 2). Finally, once we have chosen the family and the logical

model, we will compare the different DBMSs (Experiment 3).

Experiment 1: Inter-family; Inter-DBMS; MLD2-MongoDB Vs Star schema-Postgres Vs

CNSSB model-Cassandra;

Experiment 2: Intra-family; Intra-DBMS; MLD2 Vs MLD1 Vs MLD0 MongoDB;

Experiment 3: Intra-family;Inter-DBMS; MLD2 Vs MongoDB Vs CouchBase.

Relational family: Regarding to star schema, it presents a fact table (LINEORDER) and

4 shared dimensions tables (CUSTOMER, SUPPLIER, PART, DATE). More details can be

found in (O’Neil et al., 2009). Postgres is a relational DBMS allowing for transactional storage

of data 1.

Document family: For document family logical models, we use ones proposed by (Cheva-

lier et al., 2015): MLD0, MLD1 and MLD2. MLD0 represents facts measures and dimensions

with one collection, and one document per fact. An example of one document is shown in Fig-

ure 3a. MLD1 is similar to the MLD0, but it presents a collection for facts, with a subdocument

per dimension (see Figure 3b for an example). MLD2 is similar to the star schema. It presents

a collection for the facts, and a collection per dimension. An example is shown in Figure 3c.

MongoDB is a free and open-source cross-platform document-oriented database program 2.

MongoDB uses JSON-like documents with schemas. CouchBase Server, originally known as

Membase, is an open-source, distributed (shared-nothing architecture) multi-model NoSQL

document-oriented database software package that is optimized for interactive applications 3.

Column family: For Column family logical model, we use renormalized star schema

model proposed by (Dehdouh et al., 2014) named CNSSB. This model denormalizes SSB

tables into a single table. Consequently, fact table LINEORDER is denormalized, and dimen-

sions tables PART, SUPPLIER, CUSTOMER and DATE are combined into a single LINE-

ORDER table. Using this model, attributes of dimensions are regrouped into four column

families: CF_CUSTOMER, CF_SUPPLIER, CF_PART and CF_DATE.

For instance, the column family CF_CUSTOMER allows to group all attributes of CUS-

TOMER dimension and so on. We have tested CNSSB under Cassandra, which is column-

1. https://www.postgresql.org/, visited on 29/1/2017

2. https://www.mongodb.com/, visited on 29/1/2017

3. https://www.couchbase.com, visited on 29/1/2017
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FIG. 3 – Document family: a) MLD0, b) MLD1, c) MLD2
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FIG. 4 – CNSSB data model

oriented database management system. Cassandra 4 is an apache project originally developed

by Facebook, and BigTable by Google. The CNSSB model is presented in figure 4.

3.3 GenSSB use: PrintDW implementations

In this section, we describe the implementations of the PrintDW for some of the previously

described logical models. These functions create three files (CSV file, TBL file and JSON file)

for the different chosen DBMSs as shown in Figure 5.

The PrintDW function of relational star schema simply modifies the original one provided

by SSB.

The PrintDW function for the MLD1 model (Figure 6) generates a set of MongoDB docu-

ments in the JSON format (see figure 3a).

3.4 GenSSB use: Evaluation

In this section, we present the results of the above described experiments. We use different

scale factors (sf) namely sf=1, sf=10, sf=20 and sf=30. The scale factor sf=1 generates ap-

proximately 10
7 lines for the LINEORDER fact. Table 1 shows the sizes of the generated files

regarding to scale factor for star schema model (Postgres), MLD0, MLD1, MLD2 for (Couch-

4. http://cassandra.apache.org, visited 29/01/2017
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FIG. 5 – PrintDW implementation
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FIG. 6 – Instance of PrintDW function implementation for MLD1 (JSON file)

Base and MongoDB), and CNSSB (Cassandra). Data is loaded into MongoDB, CouchBase,

Postgres and Cassandra using native instructions.

TAB. 1 – Data size by model and by scale factor
SF SF=1 SF=10 SF=20 SF=50

Star schema 573 Mo 5.68 Go 11 Go 28 Go

MLD0 5.86 Go 58.7 Go 117 Go 294 Go

MLD1 5.96 Go 59,8 Go 118.1 Go 296 Go

MLD2 2,11 Go 21 Go 42 Go 102 Go

CNSSB 2.36 Go 23,8 Go 47,4 Go 120,3 Go

Experiment 1: This experiment aims to compare loading time of (JSON, TBL AND CSV)

files generated by GenSSB for three DBMS systems (MongoDB, Postgres and Cassandra). We

consider the JSON files generated for MLD2, TBL files generated for star schema model, and

CSV file generated for CNSSB. Our results show that MongoDB is faster when it comes to

loading compared to Cassandra and Postgres. In the rest of the paper, we present experiments

regarding to document-oriented model using MongoDB and CouchBase DBMSs.

Experiment 2: This experiment aims to compare loading time of Json file generated by

GenSSB for MLD0, MLD1 and MLD2 into MongoDB. Since, we are mostly interested to

load performance in our case study, MLD2 is the best choice. Indeed our results show that
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FIG. 7 – Data loading time of Json file into MongoDB and CouchBase (sf=20)

its loading time is lower than the other models because of its non-redundant approach (MLD2

needs less data to load as shown in Table 1).

Experiment 3: In this experiment, we compare loading time of Json files generated for

MLD0, MLD1 and MLD2 in MongoDB and CouchBase. As previously shown, the MLD2

model is better than the other models, but no significant differences can be noted about is

implementation in MongoDB and CouchBase (see Figure 7). Therefore, the choice between

the two document DBMSs needs to compare query performance.

3.5 Case study discussion

From the experiments previously described, it appears evident that for our case study the

MLD2 model with MongoDB DBMS is a feasible solution. Indeed, the size of sensors data

that will be warehoused corresponds more or less to the fact table of GenSSB with SF=20,

and the loading time remains acceptable (few minutes). Moreover, as stated in Section 3.1, the

implementation of the printDW functions takes only one day, for a 2 days trained engineer. Fi-

nally, all these experiments were conducted in one day. To conclude, with few implementation

efforts we were able to choice a feasible solution in terms of logical model and DBMS for the

future implantation of our energy use DW.

4 Conclusion

In the context of NoSQL DWs, the lack of a widely recognized logical model for NoSQL

DWs implies the need for new benchmarks for these new DBMSs. Therefore, in this paper

we present GenSSB, a proposal for generic data benchmark for data warehouses. Our pro-

posal is based on conceptual model to generate data that can be supported by many DBMSs

with any logical multidimensional model. As future work, taking into account complex mul-

tidimensional structures such as complex hierarchies (non-strict, non-onto and non-covering),

and complex facts (multi-granular and many to many facts-dimensions is also necessary since

these structures usually characterize real DW applications.
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Résumé

Les systèmes NoSQL se basent sur de nouveaux modèles de données différents du re-

lationnel. En raison de l’absence d’un modèle logique pour les entrepôts de données (EDs)

accepté par les communautés académique et industrielle, quelques travaux préliminaires pro-

posent des extensions / redéfinition des modèles relationnels en étoile et de flocons de neige

pour les SGBDs NoSQL. Cependant, de nombreuses autres possibilités de modélisation restent

inexplorées, et il est difficile de comparer ces propositions en raison de l’absence d’un modèle

de référence reconnu pour les EDs. Dans cet article, nous proposons une extension générique

du Star Schema Benchmark, appelée GenSSB, pour gérer tout type de SGBD en termes de

modèles logiques. Nous validons notre proposition en utilisant différents modèles logiques et

SGBSs NoSQL.
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