
A two level co-clustering algorithm for very large data sets

Bartcus Marius, Boullé Marc, Clérot Fabrice

Orange Labs
prenom.nom@orange.com

Abstract. Co-clustering is a data mining technique that aims at identifying the
underlying structure between the rows and the columns of a data matrix in the
form of homogeneous blocks. It has many real world applications, however
many current co-clustering algorithms are not suited on large data sets. One of
the successfully used approach to co-cluster large data sets is the MODL co-
clustering method that optimizes a criterion based on a regularized likelihood.
However, difficulties are encountered with huge data sets. In this paper, we
present a new two-level co-clustering algorithm, given the MODL criterion al-
lowing to efficiently deal with very large data sets that does not fit in memory.
Our experiments, on both simulated and real world data, show that the proposed
approach dramatically reduces the computation time without significantly de-
creasing the quality of the co-clustering solution.

1 Introduction

Co-clustering (Hartigan, 1972), also named block clustering (Govaert and Nadif, 2008) or
two-mode clustering (Mechelen et al., 2004) is a data mining technique. It aims at identify-
ing the underlying structure between the rows and the columns of a data matrix in the form
of homogeneous blocks. Whereas, the principle of standard clustering is to group similar
individuals (observations) with respect to a set of features, the task of co-clustering is to simul-
taneously group similar individuals with respect to variables and similar variables with respect
to observations, thus extracting the correspondence structure between the objects and features.
Another advantage of co-clustering over standard clustering techniques is its matrix reduction
capacity, where a large data table can be reduced into a significantly smaller one yet having the
same structure as the original matrix. Indeed, this technique finds its use in many applications
like in telecommunications (Guigourès et al., 2015), text mining (Dhillon et al., 2003; Li and
Abe, 1998), graph mining (Guigourès et al., 2015), etc.

Several co-clustering approaches have been proposed in the literature (Bock, 1979; Dhillon
et al., 2003; Govaert and Nadif, 2008). These methods differ mainly according to the type of
analyzed data (categorical or numerical), the underlying hypothesis, the extraction method
and the expected results. Several families of approaches have then been proposed to perform
co-clustering. Govaert and Nadif (2013, 2008) investigated probabilistic models with use of
latent variables in mixture models. Difficulties arise on initialization, large number of parame-
ters to estimate and computational efficiency, therefore large data are hard to manage. Indeed,

- 95 -

A two level co-clustering algorithm for very large data sets

few methods able to co-cluster large data have been proposed in literature. For instance, Pa-
padimitriou and Sun (2008) developed a tool, named DisCo implementing a distributed data
pre-processing and co-clustering using Hadoop and a map-reduce implementation. DisCo can
scale well and efficiently analyze extremely large data sets, however, it needs a large dis-
tributed infrastructure. Another co-clustering method, that exploits probabilistic models for
two or more variables of any type (numerical or categorical) is based on the MODL approach
(Boullé, 2011). The main advantages of MODL co-clustering is that it is user-parameter-
free and benefits from algorithms with sub-quadratic time complexity w.r.t. the number of
instances, allowing to deal with large data sets. According to the advantages previously men-
tioned we focus on the MODL co-clustering approach.

Indeed, the MODL co-clustering can deal with large data sets reaching up to millions of
instances and tens of thousands of values per variable, with a sub-quadratic time complex-
ity. However, it can hardly be used with very large data, with up to billions of instances and
variables having millions of values. For example, this limit is reached in the case of the anal-
ysis of Call Delay Record at a country scale, when the studied granularity goes from antenna
level (application to network dimensioning) to individual customers (marketing application
with identification of fine-grained communities and customer experience personalization). In
this paper, we focus on extending the co-clustering optimization algorithms to these large data,
given the MODL co-clustering criterion. Despite the fact that MODL can deal with numerous
numerical or categorical and even mixed variables, in this paper we investigate the case of two
categorical variables.

This paper is organized as follows. First, for self-containment reasons, Section 2 recalls
the principles of the co-clustering method using the MODL criterion (Boullé, 2011) that esti-
mates the joint distribution between two categorical variables. Next, Section 3 introduces the
proposed two level algorithm for large data co-clustering. Section 4, gives experimental results
and evaluates the proposed approach on simulated and real data. Finally, Section 5 is dedicated
to discussions and concluding remarks.

2 The MODL co-clustering for two categorical variables

Let X and Y be two categorical variables with values sets VX = {vXi }, with V X = |VX |
and VY = {vYj }, with V Y = |VY |. Let D = {(xn, yn), xn ∈ VX , yn ∈ VY , 1 ≤ n ≤ N}
be a data set withN instances. An example of this data representation is given in Fig. 1, where
VX = {a, b} with V X = 2, VY = {A,B,C} with V Y = 3 and N = 4.

FIG. 1 – Data representation example.

- 96 -

I. Bartcus et al.

The data set D, represented by it’s contingency table (see Figure 1), can be summarized
using a partition of the values of each variable into clusters/groups. The cross-product of the
two partitions of size I × J forms a (I × J) co-clustering with one cell per pair of value
parts. Note that this method differs from the traditional co-clustering (Govaert and Nadif,
2013) which considers partition of observations and of variables.

In order to choose the "best" co-clustering model M̂ (given the data) from the model space
M, we use a Bayesian Maximum A Posteriori (MAP) approach. We explore the model space
while minimizing a Bayesian criterion, called cost. The cost criterion implements a trade-off
between under-fitting and over-fitting and is defined as follows:

c(M) = − log p(M |D) ∝ − log p(M)− log p(D|M) (1)

where p(M) is the prior and p(D|M) is the likelihood of the data given the co-clustering
model. The details about the cost criterion and the optimization algorithm (called KHC) are
available in Boullé (2011). The key features to keep in mind are: (i) KHC is parameter-
free, i.e., there is no need for setting the number of clusters/groups per dimension; (ii) KHC
provides an effective locally-optimal solution to the co-clustering model construction, in sub-
quadratic time complexity O(N

√
N logN) more precisely O(N∗

√
N∗ logN∗), where N∗ =∑V X

i=1

∑V Y

j=1 1{nij>0}nij is the number of actual value pairs encountered at least once. How-
ever, some data sets come potentially with up to billions of instances and variables having
millions of values. These data sets cannot be analyzed using KHC, unless using machines
equipped with hundreds of Gb of RAM and still waiting days of computation.

3 Scaled MODL co-clustering
Our objective is to extend the co-clustering optimization algorithms to such large scale

data, given the MODL co-clustering criterion, while taking into consideration the following
memory constraints for the Scaled MODL co-clustering.

— the algorithm can store all the VX , VY values in the memory,
— the N∗ actual pairs of values cannot be stored in memory; and they can only be stored

on the disk,
— we can run our co-clustering algorithm on matrices of size at most I2max � N∗.

Finally, the optimized co-clustering model must fit in memory with the following memory
complexity O(V X) +O(V Y) +O(I2max).

Suppose, the observed data D can hardly be co-clustered because of one or two follow-
ing reasons. First, the number of instances N can be very large and second, the number of
values on each dimension V X or V Y can be too large to be handled by current co-clustering
algorithms. To handle this, we consider the memory constraints and propose a two level co-
clustering algorithm that allows KHC to produce co-clustering models faster with the smallest
possible decrease of their quality. The algorithm is organized in two phases. The first phase
consists in the Split phase given by the two following steps.

1. Partitioning step: aims at obtaining sub data sets from the whole data, such that future
co-clustering on each of them meet the memory constraints.

2. Fine co-clustering step: builds a co-clustering from each sub data sets using the KHC
tool.

- 97 -

A two level co-clustering algorithm for very large data sets

The second phase consists in the Aggregation phase with the following two steps.

3. Amalgamate step: consists in building a global co-clustering on the initial (large) data
set by merging the co-clusterings obtained from the sub data sets.

4. Post-optimization step: improves the model by the following tracks. First merge clus-
ters and second move values between clusters.

As a consequence, our proposed two level algorithm is a four steps process, that are further
described more precisely.

3.1 Split Phase
In our method, we adopt a divide-and-conquer approach, that starts with the split phase.

3.1.1 Partitioning step

FIG. 2 – Example of coarse co-clustering of data set D, with I(c) × J (c) coarse co-clusters.

A large data set, with at least one violated memory constraint, leads us to the very first
step of our proposed algorithm, the Partitioning step. Within the co-clustering terminology
we name it Coarse co-clustering. This first step consists in coarse co-clustering D in order
to obtain I(c) coarse clusters based on VX and J (c) coarse clusters based on VY . We obtain
G(c) = I(c)× J (c) coarse co-clusters. Let, VXα and VYβ be the sets of values for respectively α

and β coarse clusters, such that VX =
⋃I(c)
α=1 VXα and VY =

⋃J(c)

β=1 VYβ .
We propose a random partitioning algorithm, which works as follows. First, we shuffle the

values of variablesX and Y . Second, we partition the shuffled variable values into respectively
I(c) and J (c) parts of equal size. Since our variable values are shuffled, this initial solution is
likely to be blind to information patterns. Thus, using such a solution and continue to the
next steps can produce a non informative co-clustering result. In order to bypass this issue,
a pre-optimization step, similar to Boullé (2011), is used. This pre-optimization step consists
in improving the MODL cost (1) by moving the values between clusters, thus improving the
initial co-clustering solution by moving the boundaries.

TheG(c) = I(c)×J (c) coarse co-clusters are actually related to sub data sets that are further
easier analyzed accordingly to a smaller data size. Note by Dαβ = {(x, y) ∈ D,x ∈ VXα , y ∈

- 98 -

I. Bartcus et al.

VYβ } the sub data sets of D, where 1 ≤ α ≤ I(c) and 1 ≤ β ≤ J (c). Also, D =
⋃
αβ Dαβ .

Each of these sub data sets is adapted to the memory constraints. Fig.2 shows an example of
coarse co-clustering on the data D.

The complexity of this step isO(I(c)J (c)(V X+V Y)/2), thus the computation time grows
linearly with I(c) and J (c).

3.1.2 Fine co-clustering step

FIG. 3 – Example of fine co-clustering for each sub data set Dαβ into I(f)αβ × J
(f)
αβ co-clusters.

This step consists in running KHC on each of the earlier obtained sub data sets. We
name it the fine co-clustering step. On the basis of the fine co-clustering for all sub data sets
Dαβ , ∀α = 1, . . . , I(c), ∀β = 1, . . . , J (c), we obtain I(f)αβ number of fine clusters based on

VXα and J (f)
αβ number of fine clusters based on VYβ . To summarize, we haveG(f)

αβ = I
(f)
αβ ×J

(f)
αβ

fine co-clusters for each sub data set Dαβ . Fig. 3, shows an example of fine co-clustering for
the whole data set D.

Note that this step produces different sized fine co-clusterings, with different fine cluster-
ings, for each sub data set, thus we need to combine all the obtained co-clustering results for
the whole data set D.

The complexity of this step is O
(
N
√
N/I(c)J (c) logN/I(c)J (c)

)
. Observe that, contrar-

ily to the partitioning step, a high number of partitions decreases the computation time of the
fine co-clustering step, therefore Section 3.3 is dedicated to show how we choose an optimal
number of parts.

3.2 Aggregation phase
In this phase we aggregate the results of the split phase.

3.2.1 Amalgamate step

The amalgamate step, that starts the aggregation phase of our two level algorithm, consists
in computing clusters for the entire large data set D by combining all of the obtained fine
clusters of the sub data sets. In this step, we refer to the obtained clusters as micro clusters.

- 99 -

A two level co-clustering algorithm for very large data sets

FIG. 4 – Example of amalgamate of the whole data setD, with I(m)×J (m) micro co-clusters.

Succeeding the amalgamate step we obtain I(m) micro clusters based on VX and J (m) micro
clusters based on VY . Fig. 4 illustrates an example of amalgamate step on the entire data set.

3.2.2 Post-optimization step

FIG. 5 – Example of post-optimization of the whole data set D.

As for the amalgamate step, we need to recall the memory constraint that says that our
co-clustering algorithm can run on matrices of size at most I2max. However, the amalgamate
step can eventually produce a too large number of micro clusters with I(m) > Imax or J (m) >
Imax. Before proceeding with the post-optimization step, some amalgamate results could be
necessary to reduce I(m) and J (m) such that I(m) ≤ Imax and J (m) ≤ Imax. We propose
a sampling approach that consists in randomly grouping the micro clusters into the maximum
number of possible clusters Imax. This works as follows for each dimension. First, we shuffle
the micro clusters and group them into equal Imax clusters. Second, to improve the model we
move the micro clusters between groups. This results in a randomized co-clustering model that
is be further improved by the post-optimization step.

- 100 -

I. Bartcus et al.

Boullé (2011) proposed two post-optimization types: the exhaustive merge and the greedy
post-optimization. We use similar post-optimization approaches to merge clusters and then
move values between clusters.

Merge clusters: consists in merging clusters until the null model is observed. The best
co-clustering model is then retained.

Value move: moves the values between the clusters alternatively for each variable.
Fig. 5 illustrates an example of post optimization on the entire data set.

3.3 Choosing the optimal number of parts
One main encountered problem in our proposed two-level co-clustering algorithm is to

choose the optimal size of partitions I(c) and J (c) in the partitioning step. We highlight the
fact that for small data, KHC tool is more efficient than our two level co-clustering algorithm.
This is because the time behavior on the set of processes of our algorithm is greater than the
time behavior of one KHC process directly on the whole data set. According to this we assume
that per sub data set, we need to have at least 200 values per variable and 104 instances.

Let T = TS + TA be the global execution time of our two level co-clustering approach,
where TS is the computation time of the Split phase and TA is the computation time of the
Aggregation phase. Our experiments show that TA is not impacted by the number of partitions,
therefore we focus on TS to minimize T . Recall that TS is composed of the computational time
of the partitioning step, which increases with partition size, and the computational time of the
fine co-clustering step, which decreases with partition size. Therefore, to deduce a theoretical
proposal for choosing the number of partitions, we use a heuristic approach that equalizes the
time complexity of the partitioning step O(I(c)J (c)(V X + V Y)/2) with the time complexity
of the fine co-clustering stepO

(
N
√
N/I(c)J (c) logN/I(c)J (c)

)
and assumes that the size of

partitions on X and Y (I(c) and J (c)) are proportional to their respective number of modalities
(V X and V Y). We obtain:

J
(c)
∗ =

c∗
√
V Y /V X

(
2N
√
N logN

V X + V Y

) 1
3

(2)

I
(c)
∗ =

⌈√
V X/V Y J

(c)
∗

⌉
(3)

where c∗ = 1/4 is a constant factor adjusted from our experiments.

4 Experiments
We perform experiments both on simulated and real data in order to evaluate our pro-

posed two-level co-clustering algorithm. In this experiments we run the MODL co-clustering
approach on the generated and real world data sets and compare them with our two level
co-clustering algorithm, given by 2L-KHC. Indeed, the MODL co-clustering runs in anytime
fashion, until no significant changes are observed, and outputs intermediate solutions. There-
fore, we show the results of the fist (KHC(1)) and the last (KHC) solutions of the MODL
co-clustering. The goal of these experiments is to get a good and simple summary of the data

- 101 -

A two level co-clustering algorithm for very large data sets

set. We evaluate the quality of the co-clustering model using the normalized cost, computed
by 1− c(M)

c(M0)
, where c(M) is the cost of the estimated model and c(M0) is the cost of the null

model. This normalized cost can be interpreted as a compression rate. Also, in order to show
the efficiency of our proposed algorithm we provide the computation time for each approach.

4.1 Experiments on simulated data

In this experiment we first generate our data sets D with two categorical variables X and
Y . To generate the data, we use the following probability distribution : p(xn = i, yn =

j) ∝ 1 −
∣∣∣ |(i−j)|V

∣∣∣
b

, where (i, j) are the possible categorical values for variable X and Y

respectively; V = V X = V Y is the number of values for variable X or Y , that for simplicity
are considered to be equal; and b is a parameter that controls the concentration of the data
simulated on the diagonal of the data matrix.

We vary data mixtures and sparsity by generating three data type families. These are uni-
form, skewed and sparse families. Fig. 6 shows an example of these three data types families.
First, we generate uniform and respectively skewed data families. The values of X are given

a=1.5, b=1 a=1, b=1 a=1, b=0.01

FIG. 6 – Example plots of skewed (left), uniform (center) and sparse (right) data sets.

by i = du ∗ V e and the values of Y are given by j = dw ∗ V e, where (u,w) are random
variables drawn independently from the power law ax(a−1), with a a shape parameter con-
trolling the balance in our data. For a = 1 the uniform data family is generated, while for a
higher a skewed data family are generated. For our experiments we fix a = 1.5 for to generate
skewed data. For a better comprehension of the difference between uniform and skewed data
sets, the skewed data generates less data for first generated (i, j) value pairs. Also, setting a
small b = 0.01 concentrates the data in the diagonal, thus obtaining the sparse data family.

To show the effectiveness of our two level co-clustering algorithm we generate six types of
data sets by varying the number of instances and values per variable. Table (1) summarizes the
generated data sets.

Dataset D1 D2 D3 D4 D5 D6

N 106 106 106 107 107 107

V 200 2000 20000 200 2000 20000

TAB. 1 – Generated data sets.

- 102 -

I. Bartcus et al.

First, we run our experiments on uniform data sets. Table 2, shows the obtained normalized
cost and the computation time, for KHC and for our two level co-clustering approach. Recall
that KHC runs in any time fashion providing intermediate solutions. In our results we present
the first and the last retrieved solutions noted by respectively KHC(1) and KHC. Our two level
co-clustering approach is given by 2L-KHC. Observe that when the number of values is small,
V = 200 (D1, D4), the 2L-KHC approach obtains a better solution than that of KHC(1)
given the same optimization time. The final solution of KHC is improved by 0.5%, while our
approach is ten times faster. For D2, D3, D5 and D6 when the numbers of values per variable
are V = 2000, 20000 we can see that the 2L-KHC approach obtains a better solution than that
of KHC(1) with approximately 15-50 less time. Also, it is approximately 70-150 times faster
than KHC, while obtaining models of comparable quality.

Normalized cost Time(s)
Data 2L-KHC KHC(1) KHC 2L-KHC KHC(1) KHC
D1 0.005354 0.005311 0.005381 8 10 84
D2 0.003270 0.003127 0.003282 277 3885 20324
D3 0 0 0 361 18113 18113
D4 0.005534 0.005525 0.005537 11 11 116
D5 0.003792 0.003718 0.003793 1036 32015 204137
D6 0.002533 0.002447 0.002538 4056 196974 602534

TAB. 2 – The obtained co-clustering results on uniform data sets.

Second, we run our experiments on sparse data sets. Table 3, shows the obtained results
on our sparse data. Note that, for V = 200 (D1,D4), the 2L-KHC approach obtains the same
co-clustering quality as that of the KHC(1) and KHC, while the computation times for all of
these approaches are rather small. However, when we have V = 2000 values per variable (D2,
D5), we observe that our two level co-clustering approach is 2− 10 times faster than KHC(1)
and 15 − 60 faster than KHC, while having a normalized cost 5% worse than that of KHC.
Finally, with V = 20000 (D3, D6), our co-clustering approach gives a slightly better solution
being 40 times faster than KHC(1) and 80 times faster than KHC.

Normalized cost Time(s)
Data 2L-KHC KHC(1) KHC 2L-KHC KHC(1) KHC
D1 0.08474 0.08474 0.08474 48 35 342
D2 0.01535 0.01484 0.01587 2282 3939 34326
D3 0.0041 0 0 427 21586 21586
D4 0.08951 0.08951 0.08951 43 23 262
D5 0.01750 0.01749 0.01750 2409 29449 142887
D6 0.01076 0.01045 0.01046 4966 193273 405939

TAB. 3 – The obtained co-clustering results on sparse data sets.

Because of lack of space, the skewed data sets results are not shown in this paper. However
the obtained results are similar to those of the uniform data.

- 103 -

A two level co-clustering algorithm for very large data sets

To conclude, the proposed two level co-clustering approach outperforms KHC in compu-
tation time without considerably degrading the quality of the co-clustering solutions.

4.2 Experiments on real world data
We perform experiments on real data which enables us to evaluate our two level co-

clustering approach on data with a more complex distribution as compared to the generated
data.

4.2.1 Data

We conduct experiments on several real data sets: 20 Newsgroups (Mitchell, 1997), Web-
Spam (Castillo et al., 2008) and Netflix (Bennett and Lanning, 2007) (with 1% and 10% ran-
domly chosen users), whose characteristics are summarized in Table 4.

Data set N V X V Y Co-clustering variables
20 Newsgroups 2.047.830 19.464 11.315 text × words

WebSpam 13.068.666 390.130 400.000 source site × target site
Netflix (1%) 960.327 16.235 4.649 users × films
Netflix (10%) 10.049.248 17.764 48.068 users × films

TAB. 4 – Real world data sets.

The 20 Newsgroups data set has become popular for experiments in text applications of
machine learning techniques, such as text classification and text clustering. It consists of a
collection of approximately 20.000 newsgroup documents. This data comprises 2.047.830
observations, 19.464 texts and 11.315 words.

The WebSpam data set comes from a detection challenge of spam type website. The data
consists of an extract of the web graph with 13.068.666 links of 390.130 source sites and
400.000 target sites.

The Netflix data set consists of 100 millions of observations, corresponding to the ratings of
480.000 users related to 18.000 films. In order to have faster results, we choose to investigate
on approximately 1% and 10% of randomly chosen users. Thus we obtain two data sets. The
first one contains 1% randomly chosen users consisting of 960.327 observations with 4.649
users and 16.235 films. The second one contains 10% randomly chosen users and consists of
10.049.248 observations with 48.068 users and 17.764 films.

4.2.2 Results

Table 5 shows the obtained result on the real data sets, where we evaluate the normalized
cost and the computation time.

First, observe the results on the 20 Newsgroups. One can see that our two level algorithm is
two times faster, with a normalized cost is about 10% worse than that of the first KHC solution,
KHC(1).

Next, our results on the WebSpam data set, shows that our two level co-clustering algorithm
is two times faster than KHC(1) or 15 times faster than KHC, with a normalized cost within
10% of that of the KHC.

- 104 -

I. Bartcus et al.

Normalized cost Time(s)
Data 2L-KHC KHC(1) KHC 2L-KHC KHC(1) KHC

20 Newsgroups 0.0153 0.0163 0.0170 6510 12840 597600
WebSpam 0.2160 0.2331 0.2427 43130 84859 716552

Netflix (1%) 0.0184 0.0190 0.0191 1529 5534 78399
Netflix (10%) 0.0199 0.0202 0.0202 29523 354888 3548888

TAB. 5 – The obtained co-clustering results on real world data.

Finally our results on both Netflix data sets show good performance for our 2L-KHC pro-
posed approach. We can see that for the Netflix with 1% of users, the computation of our two
level co-clustering algorithm is three times faster than the KHC(1) and 50 times faster than
KHC, obtaining 4% worse normalized cost. Also, for the Netflix with 10% of users we see
that our two level co-clustering algorithm is about 12 times faster than KHC(1) and about 120
times faster than KHC, losing just 2% of co-clustering quality.

To conclude, experiments on real data show that, our two level co-clustering approach pro-
duces faster solutions without considerably decreasing the quality of the co-clustering results.
This is especially noticed on data that needs hours of computation with our approach instead
of days of computation with KHC. Also, it is noteworthy that our two level co-clustering ap-
proach uses much less memory than KHC. For example, the Netflix with 10% of randomly
chosen users, requires a machine with at least 10 Gb RAM to run KHC, while our proposed
two level co-clustering approach can run on machine with about 1 Gb of RAM.

5 Conclusions and perspectives
In this paper, we have presented a two level co-clustering algorithm using the MODL

criterion, that allows processing large data sets that does not fit in memory. The first level, that
is the Split phase, consists of the partitioning and the fine co-clustering steps, while the second
level, that is the Aggregation phase, consists of the amalgamate and post optimize steps. We
have investigated each step of our two level co-clustering algorithm.

To highlight the performance of our two level co-clustering algorithm, we have performed
experiments on simulated and real world data. We note that for small data sets, the KHC tool is
favorable, however for larger data, the proposed approach is more suitable if we want to obtain
a faster solution, without considerably decreasing the quality of the co-clustering solutions.

Finally, in our future work, we will focus on our two level co-clustering algorithm ameliora-
tion, for example by parallelizing it. Also, experiments on larger data sets will be investigated.

References
Bennett, J. and S. Lanning (2007). The netflix prize. In Proceedings of the KDD Cup Workshop

2007, New York, pp. 3–6. ACM.
Bock, H. (1979). Simultaneous clustering of objects and variables. In E. Diday (ed) Analyse

des données et Informatique, pp. 187–203. INRIA.

- 105 -

A two level co-clustering algorithm for very large data sets

Boullé, M. (2011). Data grid models for preparation and modeling in supervised learning.
In I. Guyon, G. Cawley, G. Dror, and A. Saffari (Eds.), Hands-On Pattern Recognition:
Challenges in Machine Learning, volume 1, pp. 99–130. Microtome Publishing.

Castillo, C., K. Chellapilla, and L. Denoyer (2008). Web spam challenge 2008. In 4th In-
ternational Workshop on Adversarial Information Retrieval on the Web (AIRWeb), Beijing,
China.

Dhillon, I. S., S. Mallela, and D. S. Modha (2003). Information-theoretic co-clustering. In
Proc. of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, New York, NY, USA, pp. 89–98. ACM.

Govaert, G. and M. Nadif (2008). Block clustering with Bernoulli mixture models: Compari-
son of different approaches. Computational Statistics & Data Analysis 52(6), 3233–3245.

Govaert, G. and M. Nadif (2013). Co-Clustering (1st ed.). Wiley-IEEE Press.
Guigourès, R., D. Gay, M. Boullé, F. Clérot, and F. Rossi (2015). Country-scale exploratory

analysis of call detail records through the lens of data grid models. In Proceedings of the
ECML/PKDD, pp. 37–52. Springer International Publishing.

Hartigan, J. A. (1972). Direct Clustering of a Data Matrix. Journal of the American Statistical
Association 67(337), 123–129.

Li, H. and N. Abe (1998). Word clustering and disambiguation based on co-occurrence data.
In Proc. of the 17th International Conference on Computational Linguistics - Volume 2,
COLING ’98, Stroudsburg, PA, USA, pp. 749–755. Ass. for Comp. Linguistics.

Mechelen, I. V., H. H. Bock, and P. D. Boeck (2004). Two-mode clustering methods: a struc-
tured overview. Statistical methods in medical research 13(5), 363–394.

Mitchell, T. M. (1997). Machine Learning (1 ed.). New York, NY, USA: McGraw-Hill, Inc.
Papadimitriou, S. and J. Sun (2008). Disco: Distributed co-clustering with map-reduce: A case

study towards petabyte-scale end-to-end mining. In ICDM, pp. 512–521. IEEE Computer
Society.

Résumé
La classification croisée (co-clustering) est une technique qui permet d’extraire la structure

sous-jacente existante entre les lignes et les colonnes d’une table de données sous forme de
blocs. Plusieurs applications utilisent cette technique, cependant de nombreux algorithmes de
co-clustering actuels ne passent pas à l’échelle. Une des approches utilisées avec succès est la
méthode MODL, qui optimise un critère de vraisemblance régularisée. Cependent, pour des
tailles plus importante, cette méthode atteint sa limite. Dans cet article, nous présentons un
nouvel algorithme de co-clustering à deux niveaux, qui compte tenu du critère MODL permet
de traiter efficacement de données de très grande taille, ne pouvant pas tenir en mémoire. Nos
expériences montrent que l’approche proposée gagne en temps de calcul tout en produisant des
solutions de qualité.

- 106 -

