
Collection and Identification Of Microservices Patterns And
Antipatterns

Rafik Tighilt∗, Manel Abdellatif∗,∗∗, Nader Abu Saad∗∗∗, Naouel Moha∗

Yann-Gaël Guéhéneuc∗∗∗∗

∗Université du Québec à Montréal, Montréal, Québec, Canada
tighilt.rafik@courrier.uqam.ca

∗∗Polytechnique Montréal, Montréal, Québec, Canada.
∗∗∗Bethlehem University, Bethlehem, Palestine

∗∗∗∗Concordia University, Montréal, Québec, Canada

Abstract. Microservices architectural style is becoming more and more pop-
ularin academia and industry. However, a lack of understanding of its core
conceptsand the absence of ground-truth leads to a lot of misconceptions and
develop-ment mistakes. In our research work, we aim to clarify the academic
knowledge on microservices through the collection and the automatic identi-
fication of microservices patterns and anti-patterns. To this end, we aim to
(1) introduce an exhaustive collection of microservices (anti-)patterns, and (2)
propose anautomatic approach for the identification of (anti-)patterns in mi-
croservice based systems. The continuous integration and continuous delivery
for microservices can introduce anti-patterns that may affect the maintainability
of the system and decrease its quality. Thus, we searched for re-engineering
tools used to identify (anti-)patterns in microservice based systems. The results
of our analysis showed that there is no fully-automated identification approach in
the literature. This motivates us to propose (anti-)patterns for the identification
process as a first step and then investigate how we can automatically identify
them from the artifacts of microservice based systems.

1 Introduction
A microservice is defined as a small service, having a single responsibility, running on

its own process and communicating with lightweight mechanisms Lewis and Fowler (2019).
Microservices are generally built around business capabilities and independently deployable
by a fully automated deployment machinery with a minimum centralized management of
these services Newman (2015). An illustration of a microservice based system could be an
e-commerce application. Each microservice of this system fulfils a single business function
(Inventory microservice, Shipping microservice, Cart microservice, etc.), and has its own
database. These microservices are loosey coupled, and communicate through lightweight
REST APIs.

The popularity of microservice architectures has grown in the last few years due to the
inability of monolithic applications to handle applications scalability and development cycles

- 1 -



Microservices (anti-)patterns identification

Newman (2015). Also, this architectural style has been adopted by several major actors in
industry such as Netflix, Amazon and Riot Games, which leads to its increasing popularity.

The dynamic and distributed nature of microservice based systems make them a good so-
lution to offer greater agility and operational efficiency for enterprise architectures. However,
the continuous integration and continuous delivery for microservices can introduce common
bad practiced solutions i.e., anti-patterns - opposed to design patterns, that are good solutions
to recurring problems. These anti-patterns may affect the maintainability of the system and
degrade the quality of design and QoS of the system Palma (2013). Shared database is a
good illustration of microservices anti-patterns. This anti-pattern goes against the principle
of loosely coupled microservices Neri et al. (2019). It also prevents each microservice to use
the right type of database that suits its needs (relational, graph, document, etc.). It also leads
to making the whole system go down if some parts of the persistence are down. On the other
hand, External configuration Humble and Farley (2010), which consists in externalizing all the
configurations, including endpoint URLs and credentials, which can be loaded on microservice
startup or on the fly, is a good practice to allow changes in configuration properties without
rebuilding and redeploying the entire microservice.
Context: Assessment on design, maintenance and evolution of microservice based sys-
tems. Anti-patterns are "bad" solutions to recurring problems. These solutions often lead
to harder maintainability of software systems. Like any other architectural style, microservice
based systems also face challenges with maintainability and evolution due to anti-patterns Taibi
and Lenarduzzi (2018). Thus, changing and implementing functionalities becomes more and
more difficult.
Problem: No automated approach to identify (anti-)patterns in microservice based sys-
tems. The nature of microservice based systems makes them very dynamic (multi-language
systems, different operating environments, etc.). This makes the identification of (anti-) pat-
terns in this environment an interesting problem, especially because there is a lack of automated
tools in the literature to identify (anti-)patterns in microservice based systems.
Motivation: Software maintenance is one of the most requiring fields in software industry,
whether in expanses or in resources Hanna (1993). The identification of (anti-)patterns within
a microservice based system is also a part of the maintenance process, and it leads to a better
assessment of the quality of software. In summary, with our automatic tool-based approach,
we aim to contribute to better maintenance and quality of microservice based systems.
Challenges: Microservices are, by definition, independent. With that in mind, we will need
to overcome some challenges during our work process. In fact, microservice based systems
can be built using different programming languages, which makes the identification process
more challenging. Microservices are also deployed on multiple providers using different tools
and configurations. Also, for our empirical study, we will need to find as much open-source
microservice based systems as we can to analyze them and validate our automatic approach.
Contributions: In our work, we want to (1) introduce an exhaustive collection of mi-
croservices (anti-)patterns, and (2) propose an automatic tool-based approach for the identi-
fication of (anti-)patterns in microservice based systems. Our approach is based on software
re-engineering techniques to extract from the application useful information for pattern identi-
fication.

The remainder of this paper is structured as follows. In Section 2 we describe our research
objectives. In Section 3 we outline our methodology for (anti-)patterns identification from

- 2 -



R. Tighilt et al.

microservice based systems. In Section 4 we describe some related works to microservices
(anti-)patterns, as well as (anti-)patterns identification techniques. Finally, Section 5 concludes
this paper.

2 Research objectives
In this section we will describe our research objectives and the related research questions.

2.1 Collecting microservices (anti-)patterns

The first goal of our study is to define a catalog of (anti-)patterns of microservice based
systems. Indeed, a lot of these (anti-)patterns are scattered in the literature, but it is still very
difficult to synthesise and fully understand them when working on a real-world project. For
this purpose, we will try to answer the following research question.

RQ 1: What are the (anti-)patterns for developing microservice based systems ?
Nonetheless we will also study real-world applications to see whether these best practices are
applicable to large scale projects or to industry driven systems. This will allow us to study the
gap between academia and industry regarding the way microservice based systems are built.

2.2 Automatic (anti-)patterns identification

The second goal of our work is to identify (anti-)patterns directly from the analysis of
microservice based systems artifacts (source code, deployment scripts, etc.). To this end, we
will answer the following research question.

RQ 2: How can we automatically identify (anti-)patterns by analysing microservice based
systems artifacts ?

3 Methodology
Our research process, described in Figure 1 is divided in two steps, each step leading to

the answer of one research question. The following subsections details each step and their
validation.

3.1 Collection of microservices (anti-)patterns

For the first step of our work, we will study the literature to extract microservices (anti-
)patterns. We will then map the same concepts described with different names into our own
taxonomy.

We can take as an example the Shared database anti-pattern, for which the corresponding
pattern is described in the literature by multiple definitions, as listed in Table 1.

We will also take into account in our work the industrial literature, in order to identify
the possible gap between academia and industry in the field of microservices (anti-)patterns.
This will allow us to understand the problems occurring when developing microservices in a

- 3 -



Microservices (anti-)patterns identification

FIG. 1 – Research methodology

Name Definition Source
Decentralised Data Manage-
ment and Governance

Data is distributed between
the microservices

Shadija et al. (2017)

Database per service Each microservice manages
its own data.

Richardson (2019)

Isolated Data & State Each service owns its data
and its state.

Microsoft (2019)

TAB. 1 – Shared Database corresponding pattern in the literature

day-to-day basis, and to identify the solutions implemented by the industry and the emerging
patterns we can extract.

In addition to the literature study, we will examine real-world microservice based systems 1,
by analyzing these systems artifacts, such as source code, documentation and deployment
scripts to extract common practices used by the industry when building microservices.
We aim to group the (anti-)patterns extracted from the literature and common industry practices
into a textual specification of (anti-)patterns. We can then extract a set of automated rules to
identify (anti-)patterns with our automatic tool-based approach.

3.2 Automatic (anti-)patterns identification
The second step of our work is to automatically identify (anti-)patterns in microservice

based systems. We aim to do so by specifying a meta-model for microservice based systems.
This meta-model will describe the structure of a microservice based system, its main compo-
nents (e.g., list of microservices, deployment scripts, environment variables, etc.) as well as
its main dependencies (e.g., databases, configuration files, calls between microservices, etc.).

1. https://github.com/davidetaibi/Microservices_Project_List

- 4 -



R. Tighilt et al.

This meta-model will serve as a roadmap for our detection rule engine that will embed the
different detection rules of our targeted microservices (anti-)patterns. These detection rules
will rely on several metrics such as the number of microservices in the system, the number of
endpoints per microservice, the number of microservices per databases, fan in / fan out, etc.

If we take the example of Shared database, we can identify this anti-pattern through the
analysis of the generated meta-model of the microservice based system. We focus on the
description of the deployment scripts and the source code of the microservices. From these
artifacts, we calculate the number of microservices by database. This metric will allow us to
identify the shared databases between the microservices.

On the other hand, if we want to identify violations of the External configuration pattern,
we can analyse the source code to find hard coded configuration-related information such
as URLs, Database credentials, configuration constants, as well as the usage of environment
variables extracted from our meta-model.

3.3 Validation

We will validate the results of our identification process by performing an empirical study
on real-world microservice based systems to obtain outputs from our tool, which we will
compare with the output gathered through a manual analysis of a subset of the analysed
systems. We already identified microservice based systems on which we can perform our
validation, such as Service Commerce 2 or LakeSide 3.

4 Related work

Several work has been done regarding (anti-)patterns definition and identification for mi-
croservice based systems. For the understanding of the microservice architecture and patterns
definition, Pahl and Jamshidi (2016) conducted a systematic mapping study on 21 selected
works that were published from 2014 to 2016. They classified and compared the selected stud-
ies based on a characterisation framework they defined in their work, resulting in a discussion
of the agreed and emerging concerns within the microservices architectural style.
Zimmermann (2016) proposed to map microservices tenets to service oriented architecture pat-
terns to conclude that microservices constitute one special implementation approach to service
oriented architecture. Garriga (2018) in his work, proposed a taxonomy of concepts regarding
microservices, which includes the whole microservices life-cycle (design, implementation,
deployment, runtime and cross-cutting concerns), as well as organizational aspects.
Soldani et al. (2018) conducted a study on the industrial grey literature. They did so by identi-
fying, taxonomically classifying, and systematically comparing the existing grey literature on
pains and gains of microservices, from their design to their development to the state of the art,
in order to fill the gap between the academia and the day-to-day industry practices.

For the real-world software study, Marquez and Astudillo (2018) extended their previous
work with Osses et al. (2018) determining whether architectural patterns have been used in
the development of microservice based systems by providing (i) a catalog of microservices

2. https://github.com/antonio94js/servicecommerce
3. https://github.com/Microservice-API-Patterns/LakesideMutual

- 5 -



Microservices (anti-)patterns identification

architectural patterns reported in academia and industry, (ii) a correlation between quality at-
tributes and microservices architectural patterns, (iii) a list of technologies, deployed as frame-
works, used in the construction of microservice based systems with microservices architectural
patterns, and (iv) a comparative analysis of service oriented architecture and microservices
architectural patterns. They did so by analysing a set of microservices based open-source
projects on GitHub.

Through our literature study, we conclude that very few work has been done in the field of
automatic identification of (anti-)patterns in microservice based systems. Thus, we identified
a gap that we aim to fill through our research process.

5 Conclusion

Microservcies are becoming a very popular architectural style, supported by a lot of com-
panies (Netflix, Amazon, Riot Games, etc.). Thus, understanding this architecture, its (anti-
)patterns, and the ecosystems around is fundamental. A lot of work has been done in that
field, but there is a little that groups common practices together and synthesise the knowledge
acquired.

On the other hand, when it comes to (anti-)patterns identification in microservice based
systems, very few work has been done to propose an automatic tool-based approach to analyse
software artifacts and define if a given system respects or breaks a set of microservices patterns.
In this paper we presented our plans for creating a collection of (anti-)patterns regarding
microservice based systems, by performing a systematic literature and state of the practice
review. We also described our automatic tool-based approach for the identification of (anti-
)patterns through the analysis of microservice based software artifacts. We are still at the
beginning of our research work. We will now propose a complete collection of microservices
(anti-)patterns and an automatic identification technique to help practitioners and researchers
respect patterns when developing microservice based systems.

References

Garriga, M. (2018). Towards a taxonomy of microservices architectures. In Software
Engineering and Formal Methods, pp. 203–218. Springer International Publishing.

Hanna, M. (1993). Maintenance burden begging for remedy. SOFTWARE MAGAZINE-
WESTBOROUGH- 13, 53–53.

Humble, J. and D. Farley (2010). Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education.

Lewis, J. and M. Fowler (2019). Microservices a definition of this new architectural term.
https://martinfowler.com/articles/microservices.html. Accessed:
August 2019.

Marquez, G. and H. Astudillo (2018). Actual use of architectural patterns in microservices-
based open source projects. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC). IEEE.

- 6 -



R. Tighilt et al.

Microsoft (2019). Microservices: Isolated data and state. https:
//blogs.msdn.microsoft.com/azuredev/2018/04/11/
microservices-isolated-data-state/. Accessed: August 2019.

Neri, D., J. Soldani, O. Zimmermann, and A. Brogi (2019). Design principles, architectural
smells and refactorings for microservices: a multivocal review. SICS Software-Intensive
Cyber-Physical Systems, 1–13.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Inc.

Osses, F., G. Marquez, and H. Astudillo (2018). Exploration of academic and industrial
evidence about architectural tactics and patterns in microservices. In Proceedings of the
40th International Conference on Software Engineering Companion Proceeedings - ICSE.
ACM Press.

Pahl, C. and P. Jamshidi (2016). Microservices: A systematic mapping study. In Proceedings of
the 6th International Conference on Cloud Computing and Services Science. SCITEPRESS
- Science and and Technology Publications.

Palma, F. (2013). Detection of soa antipatterns. In A. Ghose, H. Zhu, Q. Yu, A. Delis, Q. Z.
Sheng, O. Perrin, J. Wang, and Y. Wang (Eds.), Service-Oriented Computing - ICSOC 2012
Workshops, Berlin, Heidelberg, pp. 412–418. Springer Berlin Heidelberg.

Richardson, C. (2019). Microservices pattern: Database per service. http://
microservices.io/patterns/data/database-per-service.html. Ac-
cessed: August 2019.

Shadija, D., M. Rezai, and R. Hill (2017). Towards an understanding of microservices. In
2017 23rd International Conference on Automation and Computing (ICAC), pp. 1–6.

Soldani, J., D. A. Tamburri, and W.-J. V. D. Heuvel (2018). The pains and gains of
microservices: A systematic grey literature review. Journal of Systems and Software 146,
215–232.

Taibi, D. and V. Lenarduzzi (2018). On the definition of microservice bad smells. IEEE
Software 35(3), 56–62.

Zimmermann, O. (2016). Microservices tenets. Computer Science - Research and
Development 32(3-4), 301–310.

Résumé

Le style architectural des microservices devient de plus en plus populaire dans le monde
académique et l’industrie. Cependant, un manque de compréhension de ses concepts de base
conduisent à de nombreuses idées fausses et erreurs de développement. Dans nos travaux de
recherche, nous visons à clarifier les connaissances académiques sur les microservices à travers
la collecte et l’identification automatique des patrons de microservices et des anti-patrons.
Pour parvenir à cette fin, nous visons à (1) introduire une collection exhaustive d’anti-patron
de microservices et (2) proposer une approche automatique pour l’identification des (anti-
)patrons dans les systèmes basés microservices. L’intégration et la fourniture continuelle de
microservices peuvent introduire des anti-patrons qui peuvent affecter la maintenabilité du

- 7 -



Microservices (anti-)patterns identification

système et diminuer sa qualité. Ainsi, nous avons recherché des outils de réingénierie utilisés
pour identifier les (anti-)patrons dans les systèmes basés microservices. Les résultats de notre
analyse ont montré qu’il n’y a pas d’approche d’identification entièrement automatisée dans la
littérature. Cela nous motive à proposer des (anti-) patrons pour le processus d’identification
dans un premier temps, puis à étudier comment nous pouvons les identifier automatiquement
à partir des artefacts des systèmes basés microservices.

- 8 -


	Aspects structurels liés aux architectures logicielles
	Collection and Identification Of Microservices Patterns And Antipatterns Rafik Tighilt, Manel Abdellatif, Nader Abu Saad, Naouel Moha, Yann-Gaël Guéhéneuc


