
Framework for Safety in Autonomous Vehicles

Matthieu Carré∗,∗∗ Ernesto Exposito∗

Javier Ibañez-Guzmán∗,∗∗

∗ Univ Pau
Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600, France

matthieu.carre@univ-pau.fr
ernesto.exposito@univ-pau.fr

∗∗Renault S.A.S, 1 av. du Golf, Guyancourt, 78288, France
javier.ibanez-guzman@renault.com

Abstract. The integration of the Safety dimension has been a critical require-
ment when developing and deploying Autonomous Vehicles (AV). While much
progress has been achieved within the past years, most work has centred on pro-
viding vehicles with the ability to navigate autonomously. Safety has emerged
as the major challenge. This paper proposes a reference architecture that incor-
porates the notion of self-safety into existing AV architectures. This architecture
consists in a multi-layered control loop aimed at managing self-adaptation pro-
cesses in order to ensure safety at run-time.

1 Introduction
The development and deployment of Autonomous Vehicles (AV) is a very challenging

endeavour from a safety perspective. Vehicles must navigate through multiple situations pre-
venting any potential harm and without disturbing traffic flow in order to be accepted by
the society. Safe driving under full computer control also requires to interact and operate
around with different entities within complex road networks and to appropriately address their
different behaviours.

While much progress has been achieved within the past years, most work has centred on
providing vehicles with the ability to navigate autonomously. Safety has emerged as the major
challenge, not only on the vehicle behavioural side to address edge-cases (i.e. navigate safely)
but also to manage malfunctions or external disturbances (i.e. fault tolerant).

Current work in the safety domain has proposed relevant approaches for the analysis,
refinement, integration and enforcement of AV safety. Considering safety as a dynamic con-
trol problem as proposed by Leveson et al. (2015) and Leveson and Thomas (2018) shows
promising applications and several interesting results have been presented in Lefèvre et al.
(2014), Raste et al. (2015), Bagschik et al. (2017b) and Cook et al. (2018). Complementary
research investigates the trade-off with the traditional failure analysis for hazards coverage as
in Sulaman et al. (2019) and Ford (2018) while others address the compatibility of the approach
with the current AV standards as in Abdulkhaleq et al. (2017), Sabaliauskaite et al. (2018) and
Vernacchia (2018). However, most of these works converges on the difficulty to provide a

- 9 -



Framework for Safety in Autonomous Vehicles

scalable integration and enforcement of AV safety based on the application of maturing safety
analysis methodology to identify safety constraints. Moreover, addressing safety management
and assurance at run-time using adaptive behaviours as in Törngren et al. (2018), Kane et al.
(2015), Trapp and Schneider (2014), Cheng et al. (2014) and Amorim et al. (2018) has been
shown to require a complex combination of AV system non-functional properties including
observability, traceability, reconfigurability and scalability as presented in Cuer et al. (2018)
and Stoica et al. (2017).

The main contribution presented in this article is a reference architecture that incorporates
the notion of self-safety into an existing AV architectures. This architecture consists in two
layers that manage self- adaptation processes to ensure safety at run-time. The first layer
manages directly the components of the extended autonomous vehicle architecture with a
collection of dependable processes. These processes guarantee the satisfaction of the require-
ments specified by each of the concurrent safety constraints. The second layer manages these
dependable processes and guarantee their activation, management and deactivation based on
dynamic conditions observed on the context (i.e. reconfiguration based on road conditions or
to avoid conflicts between safety constants).

This paper is structured as follows: Section 2 presents the requirements for a run-time
adaptive architecture for safety assurance that is observable, traceable, reconfigurable and
flexible in its way of managing the safety constraints that can be enforced both in system design
and during run-time operations. Section 3 presents the reference architecture and section 4
details the implementation guidelines of the reference architecture applied to AV. Finally, the
conclusions and perspectives of this work are presented.

2 Requirement Analysis
Our approach aims at proposing a reference architecture intended to provide safety assur-

ance at run- time as the result of active adaptation processes. These processes are dependable
and intend to guarantee both internal or external safety constraints of the AV. In order to cope
with the set of NFP required for AV safe systems (i.e. observability, traceability, reconfigura-
bility and scalability), we propose to put emphasis on the following design principles:

— Consider safety as a control problem guiding the design of an effective control architec-
ture able to react or to reduce adverse events. System Safety considers the enforcement
of safety by both the elimination of the hazards by design or the management of the
hazards by control. Enforcing safety in the vehicle on the operational contexts requires
to identify the constraints that can assess safety at run-time through monitoring, diag-
nosis or a full close adaptation loop;

— Enforce vehicle safe behaviours upon the different contexts the vehicle can operate in.
The system architecture needs to offer ways to satisfy the multiple safety constraints
by adapting its design or by ensuring it by run-time assurance functionalities. As the
safety constraints can be highly contextualized (i.e. assess in a specific scenario or use
case), the architectural model has to be able to capture and store this information;

— Facilitate the integration of system functions following a black-box approach, expos-
ing only services and interface specifications (e.g., input and output of messages).
Functions allocated to the components where safety is monitored or assessed can be
discovered and integrated using components-oriented architecture. For example, the in-

- 10 -



M. Carré et al.

tegration of components allowing observations, processing, and analysis and behaviour
prediction (e.g., neural network, machine learning or Markov process) would just result
from the discovery and plugin of the well-adapted component within the architecture.
The only preliminary requirement is for the component to be registered and specified in
the knowledge base. This registry should include attributes such as required resources,
expected output, exhibited component properties upon safety;

— Provide built-in and bolt-on monitoring, diagnostics and adaptation processes for in-
dividual AV mechanisms that can be composed and orchestrated at run-time in the
overall design. For the sake of observability and traceability, we want the system to be
able to perform using both built-in or bolt-on monitoring, diagnostics and adaptation
processes. While bolt-on processes can be connected to an existing system without
requiring significant modification of interfaces to the target system, built-in processes
may impose design requirements. They require the system to offer an extensible and
pluggable architecture where new components can be easily added with their respective
logic (e.g. goals and values for the decision method). The composition and orches-
tration of the processes contribute to bring end-to-end visibility across the different
services and to provide deep visibility into each service’s performance and logic;

— Specify and store the adaptation processes expert knowledge in distinct knowledge
bases following distinct roles: system architecture, interfaces, goals and operational
context measured values. The presence of built-in processes imposes to have a speci-
fication model of the architecture that defines the components, their behaviours, func-
tions and their respective logic that is perfectly aligned with the safety management
knowledge-oriented bases. For example, those knowledge bases result of the model of
the architecture representing the system (i.e. model-based representing and tracing the
behaviours and constraints of the system to each function and physical entities) or the
representation of the operational environment (i.e. observable state of the environment
used for self-awareness);

This section has identified the safety requirements assurance guiding the design and imple-
mentation of an AV architectural framework. In the next section, we introduce our reference
architecture that comply with those requirements by detailing and addressing each system
requirement.

3 Reference Architecture
Based on the previous requirements analysis, this section proposes a reference architecture

suited to enhance AV system with two levels of adaptation in order to guarantee safety con-
straints. First, we present the step by step construction of the reference architecture. Finally,
we detail the main components of the resulting reference architecture.

3.1 Architectural Design Process
Our main base architecture is an existing Renault’s vehicular architecture called ADCC

(Autonomous Driving Commuter Car) that provides autonomous driving capabilities to a ve-
hicle. We have based our study on this architecture since it is indispensable to start from a
real cyber-physical implementation of an autonomous vehicle, allowing to consider the real

- 11 -



Framework for Safety in Autonomous Vehicles

FIG. 1 – Reference architecture involving several levels of adaptations

restrictions and capacities offered and to evaluate its potential extensions. We are mainly
interested in enhancing this architecture in order to guarantee safe decision functionalities and
to guarantee appropriate scaling to the range of safety concerns we aim to consider.

On this basis, we propose a system enhancement aimed at adding an additional component
intended to manage safety by integrating external expertise to the existing ADCC architecture.
Figure 1 illustrates the reference architecture and details the perception, navigation and vehicle
control mechanisms that are connected to the vehicle world via the sensors and actuators
entities (section 1). We call this component extension the Safety Management System (SMS)

In order to manage safety, the system needs to be monitored by observing the components
and dataflow from the existing ADCC architecture. For this matter, we propose to enhance
ADCC with an interface of observers and measurers depicted in section 2.

As we want to perform specific adaptations or reconfiguration of components of ADCC,
we also add the corresponding reconfiguration interface in section 2. The component recon-
figuration can then be performed by a control loop using those two interfaces with the first
as data input and the second as action output. The processes involved in each loop ensure
the compliance with a safety constraint and express the links between the observations and
the reconfiguration actions as illustrated by section 3. In order to reduce the complexity, we
propose to specialize each process per safety constraint so there will exist as much control loop

- 12 -



M. Carré et al.

process as safety constraints. The architecture results in several parallel processes that share
similar sources of observations and components to reconfigure.

In addition, the different safety constraints are possibly conflicting and may intervene only
in a specific context. To manage the concurrent safety constraints to guarantee, we propose a
macro process to manage the context and conflicts (see section 4).

Finally, to ensure the system to be evolutive, traceable, have its components embeddable
and interoperable, we propose to follow a common semantic model (see section 5). It enables
each of the interfaces to communicate and favour a granular design of the knowledge (i.e. ex-
pert knowledge on the observations, reconfiguration, decisions, safety constraints and potential
conflicts).

3.2 Components Description

1. ADCC interfaces to the SMS. In the scope of our study, we map sensor information
to the perceived objects by the ADS (i.e. reading vehicle’s sensor information), the
intention (i.e. reading vehicle’s planned manoeuvres), operations of the ADS (i.e.
reading vehicle’s trajectory) and other component status (e.g. vehicle profile). Re-
configuration information encompasses the recommendation of policies, manoeuvres
or imposed trajectory for the ADS to adopt (i.e. affecting the configuration of ADS
functions at different levels).

2. Safety Assessment Processes and Behavioural Safety Assurance. The first level of
the reference architecture hosts the parallel dependable processes that enforces the
different safety constraints at run-time. Each safety assessment process is allocated
to the monitoring and the assurance of a specific safety constraint. The process itself
consists in a composition of functions operating either monitoring, diagnostic from
identified symptoms, planning or reconfiguration to adapt how the ADS is behaving.
The specifications are based on the constraint requirements and the restrictions of its
operating context. For example, the minimum distance between a pedestrian and the
vehicle shall be at 5 meters in urban areas at 30km/h.

3. Safety Orchestrator and Context-Dependence of Safety Assurance. The second level of
adaptation is built above the first level as a macro process to reconfigure the deployed
safety assessment processes upon the observed context. This reconfiguration operates
according to the context, the conflicts between constraints and the available resources.
For example, the minimum distance between a pedestrian and the vehicle shall be
at 12 meters in urban areas at 50km/h, and 25 when the vehicle position becomes
too uncertain (i.e. localization may not work correctly). This orchestration results
in structural adaptation of the deployed processes to fit the actual context and ensure
relevant and safe configurations.

4. Knowledge Models. The two presented levels of adaptations are designed as generic
processes that operates appropriately with their operative information. In our approach,
we propose to make the process agnostic. They can obtain the required knowledge from
a shared knowledge base. It will be only at run-time, when deployed, that they will may
only acquire the knowledge to operate. In this reference architecture, we explicitly store
all required information regarding the context, the deployment rules of constraints such

- 13 -



Framework for Safety in Autonomous Vehicles

as context-dependence and restrictions, the configuration of the system, and process
operations into models that are accessible through a shared knowledge base.

4 Reference implementation

To achieve observability, traceability and flexibility of the reconfigurable architecture, this
section presents a requirement analysis for the architecture implementation motivated by the
composition of existing solutions for a flexible, composable and observable architectural ap-
proach.

First, we detail how the successive adoption of the Autonomic Computing paradigm, the
microservice architectural style and the knowledge representations based on semantic models
may contribute to design a self-managed system with the expected attributes. Next paragraphs
present the consecutive collection, composition, allocation and orchestration schemes based
on the combination of those structural and behavioural concepts. In our case, the methodology
consists of decomposing the safety constraints into structured and manageable safety assur-
ance processes and their respective functions. A more detailed implementation view of the
architecture is also provided to illustrate the results of the decomposition and application on
safety in a MBSE tool. Finally, details how the knowledge of the self-managed system should
be structured and illustrates its applications to the AV.

The system’s attributes of observability, reconfigurability, traceability and flexibility have
been identified as required for our self-managed system to appropriately tackle the different
challenges of AV safety. This section identifies the potential solutions to satisfy these require-
ments based on Autonomic Computing, microservices and semantic knowledge representation
approaches.

4.1 Autonomic Computing

The Autonomic Computing paradigm proposed in Kephart et al. (2006) provides a hierar-
chical organization between components to perform relevant adaptations via so-called MAPE-
K autonomic loops. Those loops are constituted by a chain of components providing the
separated functions of Monitoring, Analysing, Planning, and Executing (MAPE) operating
around a shared knowledge base. Each of the MAPE-K loops offers a specific reconfiguration
that can be implemented within a discipline, i.e. coordinates the same type of adaptation (e.g.
self-configuring, self-healing, self-optimizing and self-protecting). It may also address across
different disciplines as they coordinate a mixture of the self-* capabilities. The management of
a MAPE-K loop by a higher-level loop is defined as autonomic orchestration. It contributes to
building hierarchical decisions that are made possible thanks to the genericity and composition
of the MAPE-K loops.

The Autonomic Computing paradigm is well-suited for self-managing architectures where
components or resources need to be reconfigured based on the monitored environment con-
ditions and guided by policies and goals. The adoption a hierarchical structure imposes the
reconfigurability with different levels of specialized decisions that can manage other compo-
nents or be managed. AC provides such decomposed structure for decisions (MAPE) and the
possibility of orchestration to develop self- adaptive systems.

- 14 -



M. Carré et al.

The design of autonomic processes based on the four MAPE functions and the knowledge
base contributes to simplify the complexity by defining loops with a specific concern making it
more manageable over the time and easily observable. Besides, each MAPE function’s inputs
and outputs can be observed, logged and replayed if necessary.

We have seen that the four MAPE functions and the associated knowledge base compose
the decision process. Consequently, the chain of commands between the components is made
explicit by the respective definition of their roles, their specified I/O, their goals and policies
that tune their functions, and their operations that implement a specific set of techniques,
methods, and algorithms. The whole definition and structure of each function contribute to
facilitating the traceability in the system during design and run-time.

In addition, the MAPE functions may not have only one operation or implementation
possible. Trades off at a given time may have imposed specific definitions allowing only a
certain spectrum of mechanisms to be used. However, future design may replace how the
function is operated by displacing the component in the decision process. The replacement of
the components of a MAPE-K loop or of the whole loop is possible as long as the functions and
roles are maintained, and I/O and knowledge are appropriately updated. Having replaceable
components for each function promotes maintainable and appropriate evolutions of the archi-
tecture over the time in the development iterations or during its operation with the selection of
the appropriate process.

The hierarchical structure offered by the AC also complies with requirement extensions as
we can add new interfaced managed resources or new MAPE loops to perform a new specific
process or supervise existing ones.

The Autonomic Computing paradigm contributes to cover the structural range of our ex-
pected attributes as it specifies a structure of decision for self-adaptive systems and also con-
tributes to the behaviour implementation, management and traceability (modelled and han-
dled).

4.2 Microservices

The microservice architectural style as described in Fowler and Lewis (2014) is applied
in the IT domain to reduce coupling and break down monoliths in web-service architectures
improving thus their scalability. It enforces a different approach to implement the capabilities,
functions and features. Each component is designed to do only one job; “Do one thing and
do it well”‘. This type of usage on cyber-physical systems is reflected in their structure and
design enhancing the loose coupling and high cohesion of its services. Additional knowledge
is necessarily required to describe how components should connect, how the capabilities and
features are associated, how the microservices can be deployed (i.e. semantic of the appli-
cations requirements), the properties we want to ensure (e.g. QoS, safety) and the manner
how microservices can be orchestrated (i.e. goals and policies). Microservices also claims to
contribute to improve the scalability of software architectures.

The adoption of microservice architectural style appears to be an appropriate solution
to ease the scaling and flexibility of the architecture of a self-adaptive system in AV with
regard to the diversity of functions involved and dynamic complex operating environment. The
microservices contributes to cover the structural range of our expected attributes as it specifies
the structure of intercommunication between components and allocation as microservices.

- 15 -



Framework for Safety in Autonomous Vehicles

FIG. 2 – Process of integration of the safety constraints in the system

4.3 Knowledge Representation and Semantic Model

Model-Driven Engineering (MDE) have contributed to facilitate the development of archi-
tecture for complex systems including self-adaptive systems by addressing their representation
problems (i.e. flexibility, scalability, and traceability) as presented in Cuer et al. (2018). In
MDE, the use of abstract models of the systems separated from the systematic implementation
are not only used for documentation but also as the vector of the architecture refinement
(e.g. understand, design, develop and maintain a system architecture). Therefore, Model-
Driven Architecture (MDA) approach insists on the separation between the system and its
implementation with the objectives to guarantee the evolutivity (i.e. being interoperable and
reusable), flexibility (i.e. being portable, extendable), and traceability (i.e. containing the
system specification and capabilities) of the resulting system architecture.

Ontology-Driven Architecture (ODA) promotes the use of semantic models or ontologies
to represent the abstract models of the system of MDA. They contribute to define domain
vocabulary, the specification and the capabilities of the represented system. Ontologies provide
expression for queryable semantic relationship between the different existing concepts and
instances, and provide consistency checking and validation capabilities for the model. The
adoption of an ODA promotes a higher level of observability and traceability in the system
architecture with machine and human- readable and queryable concepts.

In addition, the adoption of ODA in self-adaptive system contributes to represent and to
make accessible knowledge necessary for the system reconfigurability as proposed in Exposito
et al. (2009), Diop et al. (2012), Exposito (2013) and Koh-Dzul et al. (2013). In our perspec-
tives, it rigorously and consistently uses models for engineering feedback loops as it captures
the adaptation mechanisms and exchanged information.

The knowledge representation with semantic models contributes to cover the structural

- 16 -



M. Carré et al.

FIG. 3 – Ontology representation of the environment of the vehicle with road entities

range of our expected attributes regarding the capture of knowledge and how it can be docu-
mented and structured.

Figure 2 summarizes the step-by-step methodology followed to build our reference imple-
mentation architecture, guided by the safety analysis constraints, controlled by autonomic and
ontology-driven processes loops based on composable and orchestrable microservices. Due
to space limitations, in this paper we will only present the ontology-driven knowledge based
allowing to guarantee the safety constraints.

5 Specification of the safety-oriented knowledge base

To clearly identify the scope for each source of knowledge required to implement to knowl-
edge based of our reference architecture, we adopt the abstraction of models proposed by Aß-
mann et al. (2014) in the model@run.time architecture. The following paragraphs present the
particular purposes of those models, and their coverage, and the identified operating knowledge
in our approach.

- 17 -



Framework for Safety in Autonomous Vehicles

5.1 Ontology representing the safety symptoms of the environment of the
vehicle and the ADS

The Ontology representing the safety symptoms of the environment of the vehicle is pre-
sented in Figure 3. This ontology considers entities such as dynamic objects (e.g. pedestrian,
car, bus), static objects (e.g. stationary obstacles, traffic lights), the road geometry (e.g.
lane, inter- section, crosswalk), their interactions and also possible manoeuvres (e.g. crossing
activity from the pedestrian. Current perceived actions (i.e. manoeuvres) of the entities and
their respective interrelations are described using object properties. Additional information
regarding the entities can be captured using the data properties (e.g. position, speed, heading,
id, age) to integrate some relevant readings or correlations from sensor.

Instead of allocating only one manoeuvre to a road user, we propose to extend the possible
cardinality of the relation. The understanding of the behaviours of the other road entity is a
fundamental key for automated driving. It is a matter of considering the actions (i.e. what it is
currently performing), the intentions (i.e. know what it will perform next) and the expectations
(i.e. know what will be the next actions) of each respective entity. They contribute semantically
enhance the scene. We see the solution for their representations as twofold.

Firstly, we satisfy the fact that manoeuvres are not all atomic, some can result from the
composition of others and some are interchangeable. Such claims can be identified to a
commonly occurring problem in software engineering that can be address by the Design Pattern
Strategy firstly introduced by the Gang-Of-Four in Gamma (1995). As a way to configure
a class with one of many behaviours, it aims to lets the algorithm vary independently from
clients that use it. Thus, the term Strategy in Manoeuvre Strategy refers to the application
of the Design Pattern and not robotic usage. In application, the Pedestrian Strategy concept
contributes to semantically identify and represent the main manoeuvres, moves or interactions
the pedestrian can perform. In our scope, we consider that the pedestrian can perform Crossing,
Crossing_Crosswalk, Jaywalking, Running, Standing_still, Staying_waiting and Walking.

Secondly, the identification of the perceived maneuvers are subject to uncertainties due to
observability restriction raised in Törngren et al. (2018) for example. In fact, the uncertainty
reflects the capacity of the observation to be false or partial. Thus, methods as Dempster-Shafer
theory and Bayesian method are commonly used to perform the reasoning in an uncertain
world for safety monitoring according. The confidence is largely used to express a weighting
on how much we are sure of a specific sampling. In order to allow more than one cardinality
for road-user/maneuvers relation, we choose to create a Strategy instance for each manoeuvre
and attach the confidence of the observed result as a data property. The link between road user
and possible manoeuvres are then represented by the has behaviour semantic relation. The
existence of Strategy individual associated to a specific road user or the value of the confidence
can be used in our framework to create symptoms of specific scenes or situations.

The idea behind this context ontology is to keep a representation of the world that is both
human and machine readable. Hence, we have the possibility to store all sort of observations
and results regarding the vehicle external context. However, only relevant symptoms from
the monitoring (i.e. aggregations and correlations from sensor information processing and
ADS information) aims to be stored within the ontology to serve as a base for inference. In
fact, ontologies show limitations in processing a large amount of information (e.g. number
of axioms in the T-Box, A-Box for the types, individuals, relations and equivalence rules) in

- 18 -



M. Carré et al.

FIG. 4 – Ontology representation of the use cases for situations encounter using com- position
of road entities

a short time. Certain ontology features can also impact the reasoner performances and might
causing unexpected reasoning results according the analysis presented in ISO-26262 (2018).

5.2 Ontology for the representation of the current context of the vehicle
as symptoms

Context abstractions such as use cases or situations are also captured as concepts within
the same ontology. They aim to offer a higher-level representation of the context is to facilitate
scene understanding, scene tagging and identification as presented in Armand et al. (2013),
Armand (2016), Bagschik et al. (2017a), Geyer et al. (2014), Zhao et al. (2015) and Geng et al.
(2017). We can envisage them as patterns that match the different parts we intend to study
like the concepts introduced in Ulbrich et al. (2015). Figure 4 illustrates the different forms of
context abstractions we propose to capture based on the following specific representation goals
and prerequisites.

A Scene corresponds to a snapshot of the scenery and the self-representation of the dynamic
elements (i.e. it can encompass the state, intention or expectation of each of the road objects).

A Situation is an extended representation of the perceived scene where some information
are selected (i.e. only consider relevant entities for defined driving functions and subjective
restricted observation) and some are semantically enhanced (e.g. added information as relation
or property) fitting with the current objectives of the ego vehicle (e.g. goals and values for
realizing Yielding to pedestrian safety goal).

A Scenario corresponds to a sequence of scenes using Maneuvers (i.e. from actions or
events) as transitions with at least an initial scene. This concept helps representing context
abstractions where temporal development is needed.

A use case captures the guidance of one or several scenarios where a functional range (e.g.
roadway) is specified and a desired behaviour (e.g. yield to pedestrian) are involved. This
concept helps covering the definitions of use cases from ISO-26262 (2018).

Finally, we have included a last category for the gathering of the edge cases or threatening
situations in which the system needs to perform a specific strategy or meet specific objectives.

Figure 5 shows the classes of situations covering the Pedestrian crossing the road on
crosswalk use case within the black selection. The image is a screenshot of the class hierarchy

- 19 -



Framework for Safety in Autonomous Vehicles

FIG. 5 – Ontology representation of the use cases for situations encounter using composition
of road entities

of our ontology on the Protégé tool. Each displayed PEDES_XX_XX_XX axiom captures
the different entities and describes the expected relations between the different road objects
(e.g. EgoCar approaching crosswalk or a Pedestrian crossing the road) that are involved. For
example, the highlighted PEDES_02_01_01 situation aims to detect the pedestrian’s calculated
trajectory will be in the crosswalk when EgoCar is predicted to arrive to the crosswalk. An a-
priori definition of the requirements to meet is described as an Equivalent To relation. Figure
5 illustrates the relation of equivalence for the PEDES_02_01_01 situation at the bottom-right
panel. The abstraction aims to detect a pedestrian that may cross or have the intention to cross
in the proximity of a crossroad but is currently not on the road.

Based on the descriptions of the context abstractions, the reasoner can actually perform
scene identification by inferring on the provided equivalence relations and observations. The
context identification fulfills the role of Monitor function in the OAM. The identified context
abstraction constitutes symptoms in the OAM adaptation loop. We also associate this ontology
with run-time representation that abstract our system’s configuration and is operable by the
OAM based on the SOSA/SSN ontology Haller et al. (2018). Other more complex contexts
can be described using more extended equivalences or SWRL rules. In our approach, we
only capture high-level observations and do not store raw observations or raw data to keep the
ontology at a run-time manageable scale and the reasoning time efficient.

6 Acknowledgment

This work has been financed by Renault and by FUI 23 under the French TORNADO
research project focused on the interactions between autonomous vehicles and infrastructures

- 20 -



M. Carré et al.

for mobility services in low-density areas. Further details of the project are available at
https://www.tornado-mobility.comhttps://www.tornado-mobility.com

7 Conclusions and perspectives

In this article, we have presented an original architecture resulting from the extension
of a real cyber-physical autonomous architecture and implemented based on a microservice-
oriented and knowledge-based model-driven framework for designing autonomic and cognitive
AV systems.

Within this framework, we combine a set of patterns to perform two levels of adaptations
and their respective knowledge. We define the different models and their use in the different
functions of the autonomic adaptation. The definition of such patterns and models has been
motivated by the need of traceability, flexibility and composability in AV systems. We have
introduced the use of ontologies in order to implement the knowledge base of our reference
architecture. Regarding performance and scalability, even in this article we have not presented
the evaluation of these properties, since the architecture can be potentially distributed within
internal or external vehicle infrastructure, dynamic and distributed deployment of MAPE func-
tions could considered for managing large number of processes.

Likewise, in this work we have considered basic situations where some can be considered
as atomic. However, a real-world scene would more result of the composition of different
abstract contexts with their own attributes variations. As an example, we can consider a
perceived scene as a composition of situations involving a pedestrian crossing the road and
the EgoCar followed by vehicle.

Future works will propose an extension to this knowledge-based implementation in order
to integrate this kind of scenarios. Moreover, next works will address architecture verification
as well as the evaluation of functional and non-functional requirements satisfaction.

References

Abdulkhaleq, A., S. Wagner, D. Lammering, H. Boehmert, and P. Blueher (2017). Using
STPA in compliance with ISO 26262 for developing a safe architecture for fully automated
vehicles. CoRR abs/1703.03657.

Amorim, T., D. Ratasich, G. Macher, A. Ruiz, D. Schneider, M. Driussi, R. Grosu, and
A. Hoeller (2018). Runtime safety assurance for adaptive cyber-physical systems: ConSerts
M and ontology-based runtime reconfiguration applied to an automotive case study. In
Solutions for Cyber-Physical Systems Ubiquity, pp. 137–168. IGI Global.

Armand, A. (2016). Situation Understanding and Risk Assessment Framework for Preventive
Driver Assistance. IV’14 (2016SACLY008).

Armand, A., D. Filliat, and J. Ibañez-Guzmán (2013). Detection of Unusual Behaviours for
Estimation of Context Awareness at Road Intersections. In 5th Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, Proceedings of the 5th Workshop on
Planning, Perception and Navigation for Intelligent Vehicles, Tokyo, Japan, pp. 313–318.

- 21 -



Framework for Safety in Autonomous Vehicles

Aßmann, U., S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp (2014). A Reference Architecture
and Roadmap for Models@̈run.time Systems, pp. 1–18. Cham: Springer International
Publishing.

Bagschik, G., T. Menzel, and M. Maurer (2017a). Ontology based scene creation for the
development of automated vehicles. CoRR abs/1704.01006.

Bagschik, G., T. Stolte, and M. Maurer (2017b). Safety analysis based on systems theory
applied to an unmanned protective vehicle. Procedia Engineering 179, 61 – 71. 4th
European {STAMP} Workshop 2016, {ESW} 2016, 13-15 September 2016, Zurich,
Switzerland.

Cheng, B. H. C., K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A. Müller, P. Pelliccione,
A. Perini, N. A. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, and N. M. Villegas (2014).
Using Models at Runtime to Address Assurance for Self-Adaptive Systems, pp. 101–136.
Cham: Springer International Publishing.

Cook, S. A., H.-H. Fan, K. Pennar, and P. Sundaram (2018). Building behavioral competency
into stpa process models for automated driving systems.

Cuer, R., L. PiÃ©trac, E. Niel, S. Diallo, N. Minoiu-Enache, and C. Dang-Van-Nhan (2018).
A formal framework for the safe design of the autonomous driving supervision. Reliability
Engineering & System Safety 174, 29 – 40.

Diop, C., G. Dugué, C. Chassot, E. Exposito, and J. Gomez (2012). QoS-aware and autonomic-
oriented multi-path TCP extensions for mobile and multimedia applications. International
Journal of Pervasive Computing and Communications 8(4), 306–328.

Exposito, E. (2013). Advanced Transport Protocols: Designing the Next Generation. John
Wiley & Sons.

Exposito, E., J. Gomez, and M. Lamolle (2009). Semantic and architectural framework for
autonomic transport services. In 2009 Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, pp. 99–104.

Ford (2018). A matter of trust fords approach to developing self-driving vehicles. techreport,
Ford.

Fowler, M. and J. Lewis (2014). Microservices: a definition of this new architectural term.
ThoughtWorks. http://martinfowler.com/articles/microservices.html [last accessed on July
06, 2016].

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software. Pearson
Education India.

Geng, X., H. Liang, B. Yu, P. Zhao, L. He, and R. Huang (2017). A scenario-adaptive driving
behavior prediction approach to urban autonomous driving. Applied Sciences 7, 426.

Geyer, S., M. Baltzer, B. Franz, S. Hakuli, M. Kauer, M. Kienle, S. Meier, T. Weissgerber,
K. Bengler, R. Bruder, F. Flemisch, and H. Winner (2014). Concept and development of
a unified ontology for generating test and use-case catalogues for assisted and automated
vehicle guidance. IET Intelligent Transport Systems 8(3), 183–189.

Haller, A., K. Janowicz, S. J. Cox, M. Lefrançois, K. Taylor, D. Le Phuoc, J. Lieberman,
R. García-Castro, R. Atkinson, and C. Stadler (2018). The modular ssn ontology: A joint
w3c and ogc standard specifying the semantics of sensors, observations, sampling, and

- 22 -



M. Carré et al.

actuation. Semantic Web Pre-press(Pre-press), 1–24.
ISO-26262 (2018). ISO 26262 - Road vehicles - Functional safety.
Kane, A., O. Chowdhury, A. Datta, and P. Koopman (2015). A case study on runtime

monitoring of an autonomous research vehicle (arv) system. In E. Bartocci and R. Majumdar
(Eds.), Runtime Verification, Cham, pp. 102–117. Springer International Publishing.

Kephart, J., D. Chess, C. Boutilier, R. Das, and W. E. Walsh (2006). An architectural blueprint
for autonomic computing. IBM White paper.

Koh-Dzul, R., M. Vargas-Santiago, C. Diop, E. Exposito, and F. Moo-Mena (2013). A smart
diagnostic model for an autonomic service bus based on a probabilistic reasoning approach.
In 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing
and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing, pp.
416–421.

Lefèvre, S., D. Vasquez, and C. Laugier (2014). A survey on motion prediction and risk
assessment for intelligent vehicles. ROBOMECH Journal 1(1), 1.

Leveson, N. G. and J. P. Thomas (2018). STPA Handbook. MIT Partnership for a Systems
Approach to Safety (PSAS.

Leveson, N. G., J. P. Thomas, and MIT (2015). STPA Primer. MIT Partnership for a Systems
Approach to Safety (PSAS).

Raste, T., H. B. Ali, and A. Houry (2015). Fallback strategy for automated driving using stpa.
In 3rd European STAMP Workshop.

Sabaliauskaite, G., L. S. Liew, and J. Cui (2018). Integrating autonomous vehicle safety
and security analysis using stpa method and the six-step model. International Journal on
Advances in Security 11, 160–169.

Stoica, I., D. Song, R. A. Popa, D. A. Patterson, M. W. Mahoney, R. H. Katz, A. D. Joseph,
M. Jordan, J. M. Hellerstein, J. Gonzalez, K. Goldberg, A. Ghodsi, D. E. Culler, and
P. Abbeel (2017). A berkeley View of Systems Challenges for ai. Technical Report
UCB/EECS-2017-159, EECS Department, University of California, Berkeley.

Sulaman, S. M., A. Beer, M. Felderer, and M. Höst (2019). Comparison of the fmea and stpa
safety analysis methods–a case study. Software Quality Journal 27(1), 349–387.

Törngren, M., X. Zhang, N. Mohan, M. Becker, X. Tao, D. Chen, and J. Westman (2018).
Architecting safety supervisors for high levels of automated driving. In the 21st IEEE
Internal Conference on Intelligent Transportation Systems.

Trapp, M. and D. Schneider (2014). Safety Assurance of Open Adaptive Systems – A Survey,
pp. 279–318. Cham: Springer International Publishing.

Ulbrich, S., T. Menzel, A. Reschka, F. Schuldt, and M. Maurer (2015). Defining and
substantiating the terms scene, situation, and scenario for automated driving. In 2015 IEEE
18th International Conference on Intelligent Transportation Systems, pp. 982–988.

Vernacchia, M. A. (2018). Gm presentation for introducing stamp/stpa tools into standards.
MIT STAMP Workshop.

Zhao, L., R. Ichise, T. Yoshikawa, T. Naito, T. Kakinami, and Y. Sasaki (2015). Ontology-
based decision making on uncontrolled intersections and narrow roads. In 2015 IEEE

- 23 -



Framework for Safety in Autonomous Vehicles

Intelligent Vehicles Symposium (IV), pp. 83–88. IEEE.

Résumé
L’intégration de la dimension “safety” est une exigence essentielle lors du développement

et du déploiement des véhicules autonomes (VA). Si de nombreux efforts ont été réalisés
au cours des dernières années, la plupart des travaux se sont concentrés sur la capacité des
véhicules à naviguer de façon autonome. La “safety” est devenue le principal défi. Cet article
propose une architecture de référence qui intègre la notion de self-safety dans les architectures
AV existantes. Cette architecture consiste en une boucle de régulation multicouche destinée à
gérer les processus d’auto-adaptation afin d’assurer la sûreté en temps réel.

- 24 -


	Aspects structurels liés aux architectures logicielles
	Framework for Safety in Autonomous Vehicles Matthieu Carré, Ernesto Exposito, Javier Ibañez-Guzmán


