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Résumé. Nous nous intéressons à la tâche d’interrogation d’un graphe de
connaissances en langue naturelle. Les graphes de connaissances peuvent être
interrogés de façon fiable via des langages formels comme SPARQL. Toutefois
cela exige une traduction complexe du langage naturel vers le langage formel.
Les grands modèles de langue (LLM) sont capables de répondre directement aux
questions en langue naturelle mais n’offrent aucune garantie concernant la vali-
dité des réponses qu’ils génèrent. Nous proposons un système neurosymbolique,
appelé AlasQA, qui répond à des questions posées en langue naturelle en combi-
nant la fiabilité d’un langage formel comme SPARQL et la puissance des LLMs.
La proposition s’appuie sur un outil intermédiaire de construction interactive de
requêtes SPARQL. Des expérimentations menées sur les jeux de données QALD
et TEXT2SPARQL valident l’intérêt de cette approche hybride.

1 Introduction

Le développement de systèmes de questions-réponses pour l’interrogation de graphes de
connaissances (KGQA) est une tâche importante à la croisée du traitement automatique du
langage naturel (TALN) et du web sémantique. Contrairement aux moteurs de recherche tra-
ditionnels, qui renvoient une liste de documents pertinents, les systèmes de KGQA visent à
fournir directement une réponse concise et exacte à une question formulée en langue naturelle
en s’appuyant sur les connaissances contenues dans des graphes comme DBpedia ou Wikidata.
La tâche de KGQA nécessite donc à la fois de comprendre la question formulée en langage
naturel et d’extraire l’information pertinente d’un graphe de connaissances pour y répondre.

Des approches symboliques ont été proposées. Elles traduisent les questions en langage
naturel en requêtes SPARQL via des patrons, des règles linguistiques ou des modèles de tra-
duction syntaxique, e.g. (Unger et al., 2012). Si ces approches garantissent précision et traçabi-
lité, elles sont sensibles à la variabilité du langage et difficilement adaptables à grande échelle.
Des travaux plus récents s’intéressent au développement de systèmes hybrides croisant LLMs
et web sémantique (Pan et al., 2024). Des systèmes tels que QAnswer (Ruseti et al., 2015) et
SPARQL-QA (Borroto et al., 2022) figurent parmi les approches KGQA les plus performantes,
exploitant respectivement les lexicalisations de Wikipédia et la traduction automatique neuro-
nale pour générer des requêtes SPARQL. Toutefois, des défis restent ouverts. En effet, si les
LLMs facilitent la compréhension du langage, ils manquent de robustesse et de fiabilité. De
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plus, les ambigüités sont encore mal gérées et les interactions se limitent souvent à un seul
prompt.

Dans cet article, nous proposons l’approche AlasQA, un système neurosymbolique ré-
pondant à des questions posées en langue naturelle en combinant la fiabilité des graphes de
connaissances par l’utilisation d’un langage formel comme SPARQL et la puissance des LLMs.
AlasQA s’appuie sur Sparklis (Ferré, 2016) comme outil intermédiaire de construction inter-
active de requêtes SPARQL garantissant la validité des requêtes produites à partir du LLM.
L’utilisateur pose une question en langue naturelle, le LLM génère une ou plusieurs séquences
de commandes, qui permettent via Sparklis de construire itérativement une requête SPARQL
traçable et ancrée dans les données. Le guidage interactif de Sparklis évite les résultats vides,
tandis que le contexte apporté par l’enchaînement des commandes dans une séquence facilite
la désambiguïsation des homonymes. Le système propose ensuite un retour en langue naturelle
basé sur les résultats de la requête. L’utilisateur peut alors affiner ou compléter sa requête soit
en langue naturelle, soit en naviguant manuellement dans l’interface de Sparklis. Des expé-
rimentations menées sur les jeux de données QALD et TEXT2SPARQL valident l’intérêt de
cette approche hybride.

2 État de l’art

Les premières méthodes de KGQA reposent sur le Web sémantique et le TAL classique.
L’objectif est de traduire une question en langage naturel en une requête formelle (SPARQL)
exécutée sur un graphe RDF. Certaines approches exploitent le parsing sémantique, d’autres
des patrons linguistiques (Unger et al., 2012) ou des interfaces interactives guidant l’utilisa-
teur (Ferré, 2016). Elles garantissent une excellente traçabilité mais souffrent d’un manque de
flexibilité linguistique et d’une portabilité limitée entre domaines (Affolter et al., 2019). Une
autre grande famille d’approches concerne l’utilisation de LLMs. Cela permet de répondre di-
rectement aux questions ou de générer des requêtes SPARQL pour interroger le graphe (Pado-
nou et al., 2024). La force des LLMs réside dans leur couverture linguistique et leur robustesse.
Néanmoins, leurs connaissances internes sont figées, coûteuses à mettre à jour et difficiles à
vérifier (Thorne et al., 2018; Zhuang et al., 2023). Ils restent fragiles face aux opérateurs sym-
boliques complexes, malgré les progrès liés au fine-tuning et à l’ingénierie de prompts (Wei
et al., 2022). Afin de dépasser ces limites, certains proposent des approches hybrides avec des
méthodes du web sémantique (Pan et al., 2024). Par exemple, les approches RAG (Retrie-
val Augmented Generation) (Lewis et al., 2020) injectent du contexte provenant des graphes
dans le prompt du LLM. D’autres approches confient au LLM le rôle d’orchestrateur d’ou-
tils, capable d’appeler un moteur SPARQL ou une API pour raisonner (Yao et al., 2023; Lu
et al., 2023). Ces méthodes conjuguent la souplesse des LLMs et la fiabilité des graphes de
connaissances, même si actuellement des limites persistent comme la difficulté de généralisa-
tion entre graphes, la gestion limitée des ambiguïtés, ou la faible robustesse sur les opérateurs
complexes. Notre proposition, AlasQA, s’inscrit dans cette dynamique hybride : elle combine
la rigueur des graphes de connaissances avec la flexibilité des LLMs, grâce à un outil interactif
de construction de requêtes SPARQL garantissant traçabilité et transparence.
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FIG. 1 – Interface Sparklis avec la question “Quelle est la capitale de la France?”

3 Préliminaires : Sparklis

Sparklis est un outil interactif d’interrogation de données du web sémantique représen-
tées sous forme de graphes de connaissances en RDF. Il repose sur la création incrémentale
de requêtes SPARQL par un utilisateur final, sans nécessiter de connaissance de la syntaxe
SPARQL ni du vocabulaire du graphe. L’utilisation la plus courante de Sparklis se fait via son
interface graphique, mais une API est aussi disponible. La figure 1 illustre l’interface utilisateur
de Sparklis lors d’une requête sur le graphe DBpedia 1 demandant la capitale de la France.

Dans la suite de l’article, nous utilisons les notions du web sémantique suivantes :
— Termes RDF : nœuds du graphe RDF, incluant les URIs, les littéraux (typés ou non

typés) et les nœuds anonymes (e.g., France, Paris) ;
— Variables SPARQL : éléments d’un ensemble infini distinct de l’ensemble des termes

RDF, utilisés pour représenter des valeurs inconnues dans une requête ;
— Classes / types RDF : catégories d’entités (e.g., Country) qui permettent de filtrer

les résultats selon leur nature ;
— Propriétés / relations RDF : types des liens entre termes (e.g., height, capital),

explorables dans le sens sujet → objet ou objet → sujet.
Nous utilisons aussi des notions propres à Sparklis liées à la navigation :

— Focus : position courante dans la requête, sur laquelle les actions de navigation s’ap-
pliquent (surligné en vert dans la figure 1). Le focus peut être déplacé dans l’arbre
syntaxique de la requête ;

— Suggestions : éléments proposés dynamiquement pour insertion dans la requête au
focus courant. Il peut s’agir d’entités, de classes, de propriétés ou d’opérations (par
exemple, agrégation ou tri). Les suggestions sont adaptées au contexte du focus et re-
flètent les données disponibles dans le graphe RDF interrogé ;

— Contraintes : filtres applicables sur les suggestions (e.g., matches “Einstein”).

1. https://fr.dbpedia.org
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FIG. 2 – Flux d’informations d’AlasQA.

4 AlasQA : système neurosymbolique de KGQA

Dans cette section, nous présentons AlasQA. Nous commençons par une vue d’ensemble
(section 4.1), puis définissons le jeu de commandes (section 4.2). Nous expliquons ensuite
comment AlasQA explore l’espace des suggestions de Sparklis pour choisir les plus perti-
nentes pour une séquence de commandes (section 4.3) et proposons différentes stratégies de
génération de séquences de commandes (section 4.4).

4.1 Approche générale

La figure 2 illustre la manière dont AlasQA transforme une question en langue naturelle
en une requête SPARQL, puis restitue la réponse correspondante. Le processus s’effectue en
trois étapes principales, articulées autour des interactions entre le LLM et Sparklis, via une
séquence de commandes intermédiaires.

(1) À partir de la question en langue naturelle, les entités et les relations sont extraites à
l’aide d’un LLM produisant une séquence de commandes pour Sparklis. Dans l’exemple de la
figure, la séquence est <a country ; France ; property capital>.

(2) Cette séquence de commandes est ensuite fournie à Sparklis. AlasQA traite séquentiel-
lement les commandes de la séquence, comme si un utilisateur interagissait avec Sparklis, afin
de construire itérativement une requête SPARQL correcte et interroger le graphe de connais-
sances. Dans la figure 2, la requête SPARQL construite est SELECT DISTINCT ?P36_7

WHERE{wd:Q142 p:P36 [ps:P36 ?P36_7].} et la réponse renvoyée par le graphe est
wd:Q90 qui correspond à l’URI de la ville de Paris dans le graphe de connaissances Wikidata.

(3) Enfin, la requête SPARQL et la réponse sont fournies à un raisonneur permettant de
remodeler ou d’enrichir la requête obtenue. Dans cette dernière étape, AlasQA se sert d’un
LLM pour traduire la réponse en langue naturelle.
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4.2 Définition du langage des commandes

Une séquence de commandes se compose d’un ensemble de commandes séparées par
des points-virgules et s’exécutant successivement (par exemple : <France ; property

capital>). Ces commandes font référence à diverses actions, principalement des appels à
l’API de Sparklis. Elles remplacent ainsi la navigation par l’interface et servent d’intermédiaire
entre le LLM et Sparklis pour automatiser les interactions.

Le jeu de commandes se compose d’instructions inspirées de SPARQL et Sparklis :
— a [class] : recherche des entités d’une classe donnée (ex. : a country) ;
— [entity] : sélection directe d’une entité (ex. : France) ;
— property [property] : recherche d’une relation existante (sens direct ou inverse)

pour un sous-ensemble des entités du focus courant (ex. : property capital).
Des commandes permettent de faire des comparaisons entre valeurs numériques ou dates :

— higherThan [number], lowerThan [number]

(e.g., <property weight ; higherThan 10>) ;
— after [date], before [date]

(e.g., <property release date ; after 2000>).
Enfin, d’autres commandes permettent de gérer des agrégations, des tris ou encore de limi-

ter le nombre de résultats :
— groupBy count : groupement sur la dernière propriété explorée et comptage

(e.g., <a movie ; property film director ; groupBy count>) ;
— asc, desc : tri croissant/décroissant des résultats ;
— limit [number] : limite le nombre N de résultats ;
— offset [number] : ignore les N premiers résultats.

4.3 Exploration de l’espace des suggestions

Dans cette section, nous expliquons comment, pour une commande donnée, une suggestion
de Sparklis est sélectionnée (section 4.3.1) et présentons ensuite différentes stratégies d’explo-
ration de l’espace des suggestions (section 4.3.2).

4.3.1 Traitement d’une commande

Lorsque AlasQA traite une commande, Sparklis propose un ensemble de suggestions à
partir de contraintes relatives au focus actuel et des mots-clés fournis en paramètre de la com-
mande. Ces suggestions peuvent être de différentes natures (relation, classe, terme). Parmi ces
suggestions AlasQA sélectionne celle qui semble la plus cohérente avec la commande. On
distingue trois cas en fonction de la nature de la commande traitée.

1. Si la commande est une entité, une classe ou une propriété, un appel à Sparklis retourne
la liste des suggestions compatibles avec le focus courant et la commande.

2. Si la commande est une contrainte, une agrégation ou un tri, elle peut être convertie
directement en une suggestion Sparklis.

3. Si la commande est limit ou offset, un post-traitement de la requête SPARQL est
enregistré pour être appliqué à la fin.
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FIG. 3 – Exemple de chemins d’exploration pour “France ; property capital”.

Pour le premier cas (entité, classe ou propriété), nous définissons un score pour guider le
choix des suggestions les plus pertinentes. Ce score combine deux critères :

— dist : la proximité lexicale, mesurée par la distance de Levenshtein entre la chaîne en
paramètre et le libellé de la suggestion ;

— freq : la pertinence statistique, mesurée par la fréquence d’apparition de la suggestion
dans le graphe parmi les entités au focus courant. Par exemple, si le focus courant
porte sur des personnes mariées et qu’une des suggestions est la propriété child. La
pertinence de child pour ce focus est mesurée en calculant le nombre de personnes
mariées dans le graphe qui possèdent la propriété child. Plus cette valeur est élevée,
plus la suggestion apparaît comme pertinente.

Le score d’une suggestion pour une commande est défini par la formule suivante :

score(cmd, sugg) = freq(sugg , focus)×
1

1 + dist(cmd , sugg)
.

En cas d’égalité de score, un second critère permet de départager les suggestions : le nombre
d’apparitions de la suggestion dans le graphe global et non plus seulement sur les éléments du
focus. Cette heuristique part du principe qu’une suggestion plus fréquente dans le graphe est
généralement plus pertinente. Il s’agit toutefois d’un choix local qui ne prend en compte que la
commande courante. Or, une suggestion localement bonne pour une commande peut s’avérer
bloquante pour les commandes suivantes.

4.3.2 Exploration de l’espace des suggestions pour une séquence de commandes

Nous avons défini trois tactiques d’exploration de l’espace des suggestions : gloutonne,
exhaustive et par faisceau. Nous détaillons chacune dans la suite. Chaque séquence de sugges-
tions est appelée un chemin d’exploration. La figure 3 illustre, pour la séquence <France ;

property capital>, les chemins d’exploration possibles. Chaque nœud correspond à un
état de Sparklis, avec un score cumulé et un ensemble de commandes restantes. Les transitions
entre états résultent de l’application d’une suggestion donnée.

Tactique gloutonne La tactique gloutonne traite chaque commande de manière indépendante.
Pour un état donné de Sparklis, elle applique toujours la meilleure suggestion locale, sans
considérer l’impact sur les commandes suivantes. Cette approche a l’avantage d’être rapide
mais peut aboutir à une solution globalement sous-optimale si une suggestion sélectionnée
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localement bloque les commandes suivantes. Dans la figure 3, cette tactique échoue car elle
suit le chemin rouge qui sélectionne le prénom France et qui n’a pas de propriété capital.

Tactique exhaustive Cette tactique a été proposée pour palier au problème des optimum lo-
caux. Pour une séquence de commandes, au lieu de n’explorer qu’un seul chemin, plusieurs
chemins sont testés. À chaque chemin est associé un score qui correspond à la somme des
scores de chaque suggestion du chemin. L’objectif est d’identifier le chemin qui maximise le
score. Afin de limiter la combinatoire, pour chaque commande, seules les n meilleures sug-
gestions locales (selon leur score) sont conservées. Ensuite toutes les combinaisons possibles
de suggestions sont explorées. Cette tactique identifie la meilleure séquence globale mais est
la plus coûteuse en temps de calcul. Dans l’exemple de la figure 3, cette tactique teste les trois
chemins (rouge, vert et noir) et trouve la solution.

Tactique par faisceau La dernière tactique s’inspire de la tactique exhaustive en explorant
plusieurs chemins tout en limitant chaque commande aux n meilleures suggestions. Elle n’ex-
plore cependant pas toutes les combinaisons possibles de suggestions : parmi tous les chemins
en cours de construction, seuls les k meilleurs (le faisceau) sont retenus pour l’étape suivante.
Cette approche équilibre qualité de la solution et coût de calcul. Dans l’exemple de la figure 3,
si on suppose k = 2, elle explore seulement les chemins rouge et vert.

4.4 Stratégies de génération de séquences de commandes

Différentes stratégies peuvent être utilisées pour définir la façon dont le LLM est utilisé
par AlasQA afin de générer la séquence de commandes. Nous avons défini deux stratégies :
One-shot (OS), qui génère une unique séquence de commandes et Retry, qui produit plusieurs
séquences pour une même question et compare leurs résultats. De plus, nous proposons un
traitement spécifique pour les questions dont la réponse est de type booléen.

One-shot (OS) Cette stratégie effectue un appel unique au LLM pour générer une séquence
complète de commandes à partir d’un prompt donné. Cette séquence est ensuite exécutée dans
Sparklis, comme vu dans la section précédente. Il s’agit de la stratégie la plus directe et la plus
rapide à exécuter, car elle ne nécessite ni itération, ni interaction intermédiaire, ni mécanisme
de correction par le LLM. Cependant, son efficacité dépend fortement de la qualité du prompt,
notamment des commandes explicitement introduites dans le prompt comme par exemple les
commandes d’ordonnancement (asc, desc) ; ainsi que des capacités du LLM à générer des
commandes valides, cohérentes et pertinentes.

Retry La stratégie repose sur une idée simple : relancer l’appel au LLM tant que les résultats
ne sont pas satisfaisants, privilégiant la fiabilité au détriment du temps de calcul. L’algorithme
répète la stratégie One-shot jusqu’à obtenir un certain nombre de réponses identiques non
vides, partant de l’hypothèse qu’une réponse vide correspond généralement à une mauvaise
interprétation de la question plutôt qu’à un cas où l’absence de réponse est correcte. Cette hy-
pothèse n’est pas toujours valide dans des cas réels car elle empêche la possibilité d’avoir des
réponses vides légitimes. Une réponse non vide ne suffit pas, car le LLM génère fréquemment
des séquences renvoyant des résultats sans pour autant répondre correctement à la question
en raison d’hallucinations, d’erreurs de terminologie, ou de mauvaises interprétations. Nous
faisons l’hypothèse qu’une bonne réponse, si elle est atteignable, a plus de chances de réap-
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paraître de façon récurrente parmi les réponses générées. Une réponse n’est donc considérée
comme valide que si elle est produite un certain nombre de fois (trois dans nos expériences).

Boolean Les stratégies précédentes ne permettent pas de traiter efficacement les questions dont
la réponse est un booléen, car Sparklis ne génère que des requêtes SPARQL produisant des ré-
sultats non vides. Or, obtenir une réponse booléenne négative (par exemple, montrer qu’une
personne n’est pas décédée) nécessite de raisonner sur l’absence de lien (dans l’exemple, l’ab-
sence d’une date de décès). Pour pallier cette limite, nous introduisons une stratégie dédiée
à ce type de questions, reposant sur trois éléments : (1) un prompt spécialisé, formulé pour
expliciter qu’entre deux entités une comparaison ou une vérification d’existence d’une pro-
priété est attendue ; (2) la génération non pas d’une seule séquence de commandes, mais de
deux séquences, reliées par un opérateur de comparaison (=, !=, <, >) ou par une comparaison
d’ensembles (pour vérifier si des ensembles se recouvrent, sont disjoints ou vides) ; (3) l’in-
troduction d’une commande spécifique match [string], permettant d’effectuer une corres-
pondance textuelle et de retourner une liste de suggestions sans imposer une sélection unique.
Par exemple, pour traiter la question “Paris est-elle la capitale de la France?”, le LLM gé-
nère deux séquences : <France ; property capital> et <match Paris>. Celles-
ci sont reliées par l’opérateur =, exprimant que la valeur attendue pour la propriété capital
doit correspondre à Paris. Si la comparaison est vraie, la réponse est True, sinon False.

5 Évaluations expérimentales

Cette section présente les expériences dont le code et les données sont disponibles en
ligne 2. Tout d’abord, nous présentons les jeux de données (section 5.1). Ensuite nous com-
parons les différentes tactiques d’exploration des suggestions (section 5.2) et stratégies de
génération de séquences de commandes (section 5.3). Enfin, nous discutons de l’impact du
modèle LLM choisi et comparons nos résultats à ceux de systèmes existants (section 5.4).

Chaque expérience est exécutée trois fois afin d’assurer la fiabilité des résultats. Leur éva-
luation repose sur des mesures standards : précision, rappel et F1-score macro. Contrairement à
certaines approches attribuant une précision de 1 à une réponse vide, nous considérons qu’une
telle réponse constitue une erreur et lui attribuons une précision de 0. Les premières évaluations
présentées ci-dessous utilisent le modèle mistral-nemo-instruct-2407@q4_k_m.
Des évaluations menées avec d’autres LLMs sont présentées en section 5.4. De plus, la taille
du faisceau pour les approches par faisceau est de 3.

5.1 Jeux de données

QALD-9-plus et QALD-10 Ces jeux de données associent des questions en langage naturel,
disponibles en plusieurs langues, à des requêtes SPARQL. QALD-9-Plus (Perevalov et al.,
2022) couvre les graphes DBpedia et Wikidata, avec des requêtes Wikidata adaptées depuis
DBpedia. QALD-10 (Usbeck et al., 2024) se concentre uniquement sur Wikidata. Les
questions couvrent plusieurs catégories (factuelles, quantitatives, superlatives, comparatives,
agrégatives), et les réponses attendues peuvent être des entités (URI), des littéraux ou des
booléens. Pour l’évaluation, nous utilisons une vérité terrain réévaluée, i.e., les requêtes

2. https://github.com/BaptisteAmice/AlasQA
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Catégorie Dataset Nb questions d’origine Nb questions utilisées Nb questions modifiées

QALD-9-Plus

DBpedia Train 408 341 0
DBpedia Test 150 115 3
Wikidata Train 371 353 11
Wikidata Test 136 126 4

QALD-10 Wikidata 394 387 5

TAB. 1 – Questions de QALD-9-Plus et QALD-10.

Dataset Type
OS-GREEDY OS-BEAM OS-DFS

Précision Rappel F1 Précision Rappel F1 Précision Rappel F1

QALD-9-Plus
Wikidata train + test (EN)

Tous 29 ± 1 29 ± 1 27 ± 1 30 ± 1 30 ± 2 28 ± 1 31 ± 0 31 ± 0 29 ± 0
bool 10 ± 7 10 ± 7 10 ± 7 6 ± 1 6 ± 1 6 ± 1 9 ± 1 9 ± 1 9 ± 1
uris 29 ± 1 29 ± 1 26 ± 0 31 ± 2 31 ± 3 28 ± 2 31 ± 1 32 ± 1 28 ± 1
literals 36 ± 3 37 ± 4 36 ± 4 37 ± 1 38 ± 2 37 ± 2 38 ± 3 39 ± 3 38 ± 3

QALD-10 Wikidata (EN)

Tous 19 ± 2 22 ± 2 19 ± 2 19 ± 1 22 ± 1 20 ± 1 20 ± 1 22 ± 1 20 ± 1
bool 3 ± 2 3 ± 2 3 ± 2 2 ± 1 2 ± 1 2 ± 1 1 ± 1 1 ± 1 1 ± 1
uris 29 ± 4 33 ± 4 29 ± 4 28 ± 2 32 ± 2 28 ± 2 30 ± 1 33 ± 2 30 ± 1
literals 14 ± 0 17 ± 0 15 ± 1 17 ± 2 20 ± 2 17 ± 2 15 ± 1 19 ± 1 16 ± 1

TEXT2SPARQL
Corporate

Tous 13 ± 3 31 ± 1 11 ± 3 12 ± 1 27 ± 4 11 ± 2 13 ± 1 29 ± 5 12 ± 1
bool 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
uris 15 ± 5 41 ± 2 14 ± 4 14 ± 1 32 ± 5 13± 3 14 ± 1 32 ± 5 14 ± 1
literals 9 ± 2 14 ± 0 7 ± 3 11 ± 1 20± 7 11 ± 2 14 ± 4 30 ± 6 12 ± 3

TAB. 2 – Performances en pourcentages avec mistral-nemo-instruct-2407@q4_k_m de la

stratégie One-Shot selon trois tactiques : gloutonne, par faisceau et exhaustive.

SPARQL ont été réexécutées sur les versions actuelles des graphes. Enfin, les éléments
obsolètes ou invalides des jeux de données ont été corrigés ou supprimés, comme résumé
en table 1. Dans la suite nous présentons les résultats concernant les questions en anglais.
Toutefois, nous avons aussi mené des expériences en français. Les résultats sont inférieurs
à l’anglais (en moyenne 5% de différence pour le F1-score). Cela est du à une phase de
traduction car les termes utilisés dans les graphes et donc dans Sparklis sont en anglais.

TEXT2SPARQL Nous avons également participé au First International TEXT2SPARQL

Challenge 2025 3. Le jeu de données utilisé est divisé en deux parties : 100 questions por-
tant sur DBpedia (avec des versions en anglais et en espagnol) et 50 questions sur un graphe
dit corporate représentant un environnement professionnel fictif.

5.2 Comparaison des tactiques d’exploration de l’espace des suggestions

Nous comparons trois tactiques d’exploration de l’espace des suggestions : gloutonne (OS-
GREEDY), exhaustive (OS-DFS) et par faisceau (OS-BEAM). Nous utilisons la stratégieOne-

Shot (OS). Les résultats sont donnés dans la table 2. Les performances observées des tactiques
exhaustive (OS-DFS) et par faisceau (OS-BEAM) sont légèrement supérieures à celles de la
tactique gloutonne (OS-GREEDY). Ce résultat confirme l’intérêt de considérer une séquence
complète de commandes plutôt que chaque commande individuellement. Comme attendu, OS-

3. https://text2sparql.aksw.org/
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Dataset Type
OS-BEAM RETRY-BEAM BOOLEAN-RETRY-BEAM

Précision Rappel F1-score Précision Rappel F1-score F1-score

QALD-9-Plus
Wikidata train + test (EN)

Tous 30 ± 1 30 ± 2 28 ± 1 41 ± 1 42 ± 1 39 ± 1 -
bool 6 ± 1 6 ± 1 6 ± 1 0 ± 0 0 ± 0 0 ± 0 60 ± 4
URIs 31 ± 2 31 ± 3 28 ± 2 43 ± 1 44 ± 1 40 ± 1 -
Literals 37 ± 1 38 ± 2 37 ± 2 51 ± 1 53 ± 2 51 ± 1 -

QALD-10 (EN)

Tous 19 ± 1 22 ± 1 20 ± 1 25 ± 0 29 ± 1 26 ± 0 -
bool 2 ± 1 2 ± 1 2 ± 1 2 ± 3 2 ± 3 2 ± 3 38 ± 7
URIs 28 ± 2 32 ± 2 28 ± 2 38 ± 1 42 ± 1 38 ± 1 -
Literals 17 ± 2 20 ± 2 17 ± 2 21 ± 2 26 ± 1 22 ± 2 -

TAB. 3 – Performances en pourcentages avec mistral-nemo-instruct-2407@q4_k_m de la

stratégie One-Shot comparées aux stratégies Retry et Boolean.

DFS fournit de meilleurs résultats qu’OS-BEAM, tandis que ce dernier présente un avantage
en termes de temps d’exécution. Par exemple, pour QALD-10, OS-GREEDY s’exécute en
moyenne en 41s, OS-BEAM en 94s et OS-DFS en 201s. On note aussi que les scores obtenus
sur QALD-10 sont inférieurs à ceux obtenus sur QALD-9-Plus. En particulier les questions
avec des réponses de type littéral sont moins bien traitées que celles ciblant des URIs, alors que
la tendance est inversée sur QALD-9-Plus. Cela pourrait indiquer que les questions avec des
réponses de type littéral dans QALD-10 impliquent des traitements plus complexes (calculs,
conditions numériques) difficiles à modéliser avec des chaînes de commandes simples.

Sur le challenge TEXT2SPARQL, notre approche a obtenu un F1-score moyen de 13%,
nous classant 7ème parmi les 12 équipes. Notons que l’approche n’était pas finalisée lors de
notre participation et utilisait une variante de la stratégie Retry limitée dans le temps. Nous
sommes aujourd’hui capables d’obtenir un F1-score de 12% sur le jeu corporate seulement
avec la stratégie One-Shot, là où nous obtenions 13% à l’aide d’une stratégie plus gourmande.

5.3 Comparaison des stratégies de génération de commandes

Nous avons comparé les stratégies de génération de séquences de commandes : One-Shot

(OS-BEAM) et Retry (RETRY-BEAM), ainsi que l’optimisation pour les questions dont la
réponse attendue est booléenne (BOOLEAN-RETRY-BEAM). Les résultats sont présentés à
la table 3. Par souci de concision, seule la tactique par faisceau est représentée, les conclusions
ne variant pas selon la tactique utilisée.

On constate que la stratégie Retry obtient des scores significativement supérieurs à ceux de
la stratégie One-Shot. Ainsi, pour QALD-9-Plus avec Wikidata train + test (EN),
le F1-score global passe de 28 % en One-shot à 39 % en RETRY-BEAM (soit +11 %).

En revanche, pour les questions dont la réponse est booléenne, les deux stratégies précé-
dentes sont peu efficaces. Il apparaît plus pertinent de détecter ce type de questions (les LLM
sont capables de les distinguer des questions factuelles avec un score de détection de 98,5%),
puis d’appliquer l’approche dédiée, qui fournit des résultats nettement supérieurs, comme le
montre la dernière colonne de la table 3.

5.4 Discussions

Impact du choix du LLM sur les performances Nous avons évalué quatre LLMs sur le jeu
de données QALD-9-Plus Wikidata test (EN) avec la tactique par faisceau : trois modèles de
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taille raisonnable en stratégie Retry (qwen2.5-7b-instruct-1m (7B), mistralnemo
et gpt-4o mini) et un modèle plus grand (gpt-4o) en stratégie One-shot. On constate des
F1-scores similaires entre les modèles : qwen2.5 obtient un score de 35%, mistral-nemo
de 36%, gpt-4o mini) de 36% et gpt-4o 36%. Ainsi, un LLM plus puissant comme
gpt-4o est capable, en un seul essai avec la stratégie One-shot, d’obtenir des performances
comparables à celles de modèles plus petits utilisant la stratégie Retry.

Comparaison avec d’autres systèmes de KGQA Dans le papier de présentation de QALD-
9-Plus, on constate que QAnswer (Ruseti et al., 2015), le système le plus performant sur ce
benchmark, obtient un F1-score de 41% sur la portion Wikidata du jeu de données. AlasQA
avec la stratégie Retry et l’optimisation pour les questions dont la réponse est un booléen
obtient un F1-score de 44%. Nos résultats dépassent donc légèrement ceux de QAnswer sur ce
jeu de données, et ce avec un modèle de taille modérée (Mistral).

Dans le papier de présentation de QALD10, en revanche, le système QAnswer obtient un
F1-score de 58%, se classant deuxième derrière le système SPARQL-QA (Borroto et al., 2022)
qui obtient un F1-score de 60% alors qu’AlasQA obtient un F1-score de 30%. Nous pensons
que dans QALD10 certaines catégories de questions, comme les comparaisons, restent peu
ou mal traitées par AlasQA et nécessiteraient des stratégies plus adaptées. Toutefois, notons
que AlasQA a un coût plus faible que ces modèles. En effet, il ne nécessite pas de fine-tuning

contrairement à SPARQL-QA et est moins sensible à la langue, contrairement à QAnswer.

6 Conclusion

Nous avons présenté AlasQA, une nouvelle approche neurosymbolique LLM-Sparklis de
l’interrogation en langue naturelle de graphes de connaissances. Les LLMs permettent d’absor-
ber la variabilité de la langue naturelle et de traduire une question en une suite de commandes
interprétables par Sparklis. Sparklis garantit la validité des requêtes SPARQL construites grâce
à un ancrage dans les données. Ses suggestions définissent un espace de recherche ouvert à
différentes tactiques et stratégies de recherche. Nous obtenons des résultats encourageants sur
des jeux de questions de référence, QALD et TEXT2SPARQL, sans aucune spécialisation aux
données cibles ni fine-tuning des LLMs. Une perspectives d’amélioration est la mise en place
d’un mécanisme similaire à celui permettant de traiter les questions booléennes, mais dédié
aux questions nécessitant des comparaisons entre sous-requêtes, comme les questions de loca-
lisation temporelle et spatiale (e.g., “Who became president after JFK died?”).
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Summary

We focus on the task of querying a knowledge graph (KG) using natural language. KG
can be queried reliably through formal languages such as SPARQL; however, this requires a
complex translation from the natural language to the formal language. Large Language Models
(LLMs) are able to directly answer natural language questions but provide no guarantees re-
garding the validity of the answers they generate. We propose a neurosymbolic system, called
AlasQA, which answers natural language questions by combining the reliability of a formal
language like SPARQL with the power of LLMs. The approach relies on an intermediate
tool for interactive SPARQL query construction. Experiments conducted on the QALD and
TEXT2SPARQL datasets validate the relevance of this hybrid method.
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