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Résumé. La reconnaissance automatique de la parole (RAP) convertit la langue
parlée en texte et constitue un enjeu majeur. Les modèles récents, tels que Mas-

sively Multilingual Speech (MMS), couvrent des centaines de langues mais né-
cessitent l’ajout d’adaptateurs pour chaque langue, ce qui augmente le coût en
paramètres et freine l’extensibilité, notamment pour les langues faiblement an-
notées. Nous introduisons MonoASR, un système multilingue frugal et unifié
qui évite ces adaptateurs grâce à une Projection Linguistique Universelle (ULP).
Celle-ci associe un token de langue appris aux représentations acoustiques, per-
mettant d’utiliser le même modèle et les mêmes paramètres pour différentes
langues. Testé sur le français (langue fortement annotée), l’arabe et le kabyle 1

(langues sous-représentées et complexes), MonoASR obtient des taux d’erreur
(WER) inférieurs à MMS, confirmant sa robustesse, sa généralisation et son in-
térêt pour une transcription multilingue à faible coût. Le code est disponible à
: https://github.com/ilyesqlm/MonoASR

1 Introduction

La reconnaissance automatique de la parole (RAP) multilingue vise à transcrire la parole
dans plusieurs langues à l’aide d’un modèle unifié. Les récents progrès reposent sur l’apprentis-
sage auto-supervisé et des architectures à base d’attention, capables de capturer des régularités
phonétiques et syntaxiques tout en favorisant la généralisation interlinguistique (Rekesh et al.,
2023; Lin et al., 2024; Sudo et al., 2024; Xue et al., 2024, 2025; Yan et al., 2025).
Parmi les approches récentes,MMS (Pratap et al., 2024) illustre l’efficacité des représentations
auto-supervisées pour de nombreuses langues. MMS apprend des représentations acoustiques
robustes à partir de larges corpus non annotés et utilise des adaptateurs spécifiques pour chaque
langue afin d’atteindre de bonnes performances. Cependant, ce mécanisme augmente fortement
le nombre de paramètres et complique l’extension du modèle à de nouvelles langues, en par-
ticulier lorsqu’elles disposent de peu de données annotées. Ces limitations motivent le besoin

1. Langue amazighe, appartenant à la famille des langues berbères d’Afrique du Nord.
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d’une approche frugale et unifiée, capable de traiter plusieurs langues avec un seul ensemble
de paramètres.

Pour répondre à ces enjeux, nous présentons MonoASR, un modèle multilingue frugal et
extensible. MonoASR partage un ensemble unique de paramètres entre toutes les langues et
intègre un token de langue appris, fusionné avec les caractéristiques acoustiques au sein d’un
module de Projection Linguistique Universelle (ULP). Cette architecture permet de capturer
les spécificités linguistiques tout en maintenant un modèle compact et facilement extensible.
Nous détaillons MonoASR dans la Section 3 et l’évaluons sur le français, l’arabe et le kabyle,
montrant des gains significatifs de WER par rapport à MMS, en particulier pour les langues
faiblement annotées.

2 État de l’art

La reconnaissance automatique de la parole (RAP) consiste à apprendre une fonction fθ
qui transforme une séquence acoustique X = (x1, . . . , xT ) en une séquence de tokens Y =
(y1, . . . , yN ) correspondant à la transcription :

Ŷ = argmax
Y

P (Y |X; θ), (1)

où θ représente les paramètres du modèle. La probabilité de la séquence peut être factorisée
pour prédire chaque token en tenant compte des précédents :

P (Y |X; θ) =

N∏

t=1

P (yt|y1, . . . , yt−1, X; θ). (2)

Les premières méthodes multilingues partageaient un modèle de base entre plusieurs langues,
parfois en combinant des embeddings phonétiques ou linguistiques spécifiques. Ces modèles
permettaient d’apprendre des représentations acoustiques communes, mais peinent à capturer
les différences phonologiques et morphologiques entre langues éloignées.
Pour faciliter le passage à l’échelle, des architectures modulaires avec adaptateurs ont été pro-
posées, comme Master-ASR (Yu et al., 2023). L’apprentissage pour une langue l se formalise
ainsi :

θ∗, φ∗l = argmin
θ,φl

L(fθ,φl
(Xl), Yl), (3)

où Xl et Yl sont les séquences acoustiques et les transcriptions, θ les paramètres partagés et
φl l’adaptateur spécifique à la langue l. Bien que cette approche permette un transfert partiel
entre langues, l’adaptateur doit être appris séparément, ce qui augmente le coût en paramètres
et limite l’extensibilité.
Les modèles généralistes, comme Whisper (Radford et al., 2023), s’entraînent sur de vastes
corpus multilingues et peuvent générer des transcriptions pour des langues non vues à l’en-
traînement. Cependant, leur performance sur les langues faiblement annotées est limitée par le
déséquilibre des données et la présence de bruit dans les annotations.
Les modèles auto-supervisés, tels que Wav2Vec 2.0 (Baevski et al., 2020) et MMS (Pratap
et al., 2024), apprennent des représentations acoustiques robustes à partir de larges corpus non
annotés. MMS introduit un adaptateur pour chaque langue. Cette approche améliore les per-
formances, mais chaque adaptateur doit être entraîné séparément, ce qui ajoute plus de deux
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millions de paramètres par langue et rend difficile l’ajout de nouvelles langues faiblement an-
notées. Le risque de sur-apprentissage ou de performances instables est élevé pour ces langues.

En résumé, la prise en charge multilingue repose souvent sur des adaptateurs coûteux ou
sur des données massives. Il est difficile de concilier frugalité, extensibilité et performance
sur les langues peu annotées. Pour pallier ces limites, nous proposonsMonoASR, un modèle
frugal et unifié qui partage tous ses paramètres entre langues et utilise un token de langue
appris fusionné avec les représentations acoustiques, comme détaillé dans la Section 3.

3 Méthodologie

Nous décrivons ici MonoASR, une architecture multilingue unifiée pour la reconnais-
sance automatique de la parole. Le modèle repose sur un partage complet des paramètres entre
langues et un conditionnement explicite par des tokens linguistiques appris.

L’architecture de MonoASR est composée des cinq modules suivants :

1. Extracteur de Caractéristiques (FE) : transforme le signal audio brut en représenta-
tions acoustiques de bas niveau.

2. Projection de Caractéristiques (FP) : ajuste la dimension et normalise les représen-
tations pour les rendre compatibles avec les modules suivants.

3. Projection Linguistique Universelle (ULP) : encode les représentations acoustiques
en tenant compte de la langue cible, grâce à un mécanisme de tokens linguistiques.

4. Encodeur (En) : capture les dépendances temporelles et contextuelles au sein des sé-
quences.

5. Tête de Langage (LM Head) : projette les représentations encodées dans l’espace du
vocabulaire cible pour produire des distributions de probabilité sur les transcriptions.

La Figure 1 illustre le pipeline complet de traitement dans MonoASR.

3.1 Architecture MonoASR

Soit un lot audio x ∈ R
N×T×din , où N est la taille du lot, T le nombre de pas temporels,

et din la dimension brute des entrées (par ex. échantillons audio). L’objectif est de produire
une séquence de distributions z ∈ R

N×L×M , où L est la longueur obtenue après le sous-
échantillonnage réalisé par le FE et M la taille du vocabulaire cible.

Extracteur et Projection de Caractéristiques. Les deux composants sont dérivés d’un en-
codeur Wav2Vec 2.0 préentraîné (Baevski et al., 2020) et sont conservés gelés durant l’entraî-
nement afin de réduire le coût de calcul et de faciliter l’apprentissage par transfert. L’FE extrait
des représentations acoustiques intermédiaires capturant les traits phonétiques et prosodiques,
puis FP les projette dans un espace latent de dimension d.

h = FP(FE(x)) ∈ R
N×L×d. (4)

Cette étape permet de réduire la variabilité acoustique et de standardiser les représentations
pour toutes les langues.

✲ ✶✼✶ ✲



MonoASR: un modèle de reconnaissance vocale multilingue frugal et unifié

Projection Linguistique Universelle (ULP). Le module ULP est la pièce centrale de Mo-
noASR. Son rôle est de permettre à un seul ensemble de paramètres partagés θ de représenter
des langues différentes, sans recourir à des adaptateurs spécifiques comme dans MMS (Pratap
et al., 2024).

Dans MMS, chaque langue l est associée à un adaptateur φl, et l’apprentissage s’écrit :

Ŷl = argmax
Y

P (Y |Xl; θ, φl), (5)

ce qui implique un coût paramétrique croissant avec le nombre de langues, chaque adaptateur
ajoutant plus de deux millions de paramètres supplémentaires.

Dans MonoASR, nous remplaçons ces adaptateurs par un token de langue appris tl ∈
R

1×d, beaucoup plus léger. Ce token agit comme un routeur, en injectant l’information lin-
guistique directement dans les représentations acoustiques, tout en maintenant les mêmes pa-
ramètres partagés pour toutes les langues.

Concrètement, pour une langue l, on concatène le token tl aux représentations projetées h :

h′ = concat(tl,h) ∈ R
N×(L+1)×d. (6)

Cette séquence est ensuite encodée par n = 4 blocs Transformer (Vaswani et al., 2017)
partagés, intégrant une normalisation RMSNorm (Zhang et Sennrich, 2019) :

u = ULP(h′; θ) ∈ R
N×(L+1)×d. (7)
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FIG. 1 – Vue d’ensemble de l’architecture MonoASR et de ses cinq composants : Extracteur de

Caractéristiques (FE), Projection (FP), Projection Linguistique Universelle (ULP), Encodeur

et LM Head.
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En supprimant ensuite le token de sortie, on obtient :

u = u[:, 1 : L, :]. (8)

Ainsi, contrairement à MMS où l’extension à |L| langues nécessite |L| adaptateurs {φl}
distincts, MonoASR conserve un seul ensemble de paramètres θ et ne dépend que des tokens
{tl}, dont la taille est négligeable.

Ce mécanisme fait du token de langue un vecteur-routeur : il oriente l’encodage des re-
présentations acoustiques vers la langue cible, permettant une adaptation fine sans gonfler le
nombre de paramètres ni multiplier les modules. C’est précisément cette frugalité qui rend
MonoASR extensible et efficace sur les langues faiblement annotées.

Encodeur. Les sorties u sont combinées avec les représentations initiales h par un méca-
nisme résiduel :

ein = h+ u. (9)

L’encodeur traite ensuite ein pour capturer les dépendances temporelles et contextuelles
longues :

e = Encoder(ein) ∈ R
N×L×d. (10)

Tête de Langage (LM Head). Une couche linéaire W ∈ R
d×M et un biais b ∈ R

M pro-
jettent les représentations encodées dans l’espace du vocabulaire. Un softmax produit les dis-
tributions de probabilité :

z = Softmax(We+ b) ∈ R
N×L×M . (11)

Chaque pas temporel est ainsi associé à une distribution sur les unités de sortie (caractères,
sous-mots, ou phonèmes).

3.2 Procédure d’entraînement

L’apprentissage de MonoASR repose sur deux stratégies complémentaires, suivies d’une
fonction de perte adaptée à la reconnaissance de la parole.

1. Entraînement simultané : toutes les langues sont vues en parallèle dans des mini-lots
mélangés.

2. Entraînement progressif : les langues sont introduites séquentiellement, en adaptant
les paramètres partagés et les tokens linguistiques.

3. Fonction de perte : la perte CTC assure l’alignement implicite entre séquences acous-
tiques et transcriptions.

Entraînement simultané. On définit le corpus multilingue comme :

D =
⋃

l∈L

{(xi
l,y

i
l)}

Nl

i=1, (12)

✲ ✶✼✸ ✲



MonoASR: un modèle de reconnaissance vocale multilingue frugal et unifié

où Nl est le nombre d’échantillons pour la langue l. À chaque itération, un mini-lot est tiré
aléatoirement de D. L’optimisation globale consiste à résoudre :

θ∗ = argmin
θ

∑

(x,y)∈D

L(fθ(x),y), (13)

où θ désigne tous les paramètres du modèle. Cette approche favorise la généralisation interlin-
guistique mais peut induire des conflits de gradients entre langues.

Entraînement progressif. Dans ce schéma, les langues sont introduites une par une. Suppo-
sons que le modèle ait été entraîné sur une langue source l0. Lors de l’ajout d’une langue l1,
seuls les paramètres partagés θ et le token tl1 sont mis à jour :

θ∗ = argmin
θ

∑

l∈{l0,...,lk}

L(fθ(xl),yl). (14)

Cette approche limite l’interférence entre langues et stabilise l’apprentissage, mais elle peut
introduire un risque d’oubli catastrophique pour les langues déjà vues.

Fonction de perte (CTC). Nous utilisons laConnectionist Temporal Classification (CTC) (Graves
et al., 2006), qui permet d’apprendre un alignement implicite entre les sorties z et les trans-
criptions cibles y. Soit π = (π1, . . . , πL) une séquence d’alignement de longueur L incluant
le token spécial blank. La probabilité de y donnée x s’écrit :

P (y|x) =
∑

π∈B−1(y)

L∏

t=1

zt,πt
, (15)

où B est la fonction de réduction supprimant les répétitions et les blancs.
La perte CTC correspond à la log-vraisemblance négative :

LCTC = − logP (y|x). (16)

Cette formulation permet au modèle d’apprendre directement à aligner les représentations
acoustiques avec les transcriptions, sans annotation temporelle explicite.

4 Expérimentations

Nous évaluonsMonoASR en le comparant àMMS, considéré comme un état de l’art pour
la RAP multilingue. L’objectif de cette section est double : (i) valider que le partage complet
des paramètres via les tokens de langue est compétitif, voire supérieur, aux adaptateurs spé-
cifiques de MMS, et (ii) analyser dans quels contextes MonoASR tire le meilleur parti de son
architecture frugale.
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4.1 Jeux de données

Nous utilisons trois langues contrastées : le kabyle (TutlaytAI, 2024) (25 h, langue peu do-
tée et morphologiquement complexe), l’arabe (Mohamed, 2024) (7 h, langue sous-représentée
et script non segmenté), et le français (odunola, 2024) (13 h, langue bien dotée).

Afin d’assurer une comparaison cohérente, nous avons :
— construit des vocabulaires au niveau caractère (59 pour le kabyle, 56 pour l’arabe, 43

pour le français), fusionnés en un vocabulaire unifié de 118 caractères ;
— rééchantillonné tous les fichiers audio à 16 kHz et défini des partitions train/validation/test

homogènes ;
— appliqué un tokenizer commun, garantissant un traitement identique entre langues.
Cette configuration met toutes les langues sur un pied d’égalité, ce qui permet de mieux

isoler l’impact de l’architecture.

4.2 Configuration expérimentale

Toutes les expériences sont conduites dans des conditions identiques pour garantir l’équité :
— Optimisation : AdamW avec taux d’apprentissage 1 × 10−3, décroissance de poids

1× 10−3, taille de lot effective 32 via accumulation de gradients ;
— Architecture : encodeur ULP composé de 4 blocs Transformer, dimension cachée 768,

8 têtes d’attention, dimension de projection 1280 ;
— Infrastructure : GPU NVIDIA A100 (80 Go).
Dans MMS, chaque langue l est associée à un adaptateur φl spécifique. À l’inverse, Mo-

noASR utilise un seul ensemble de paramètres θ pour toutes les langues, conditionné par un
token de langue tl. Cette différence structurelle est au cœur de l’analyse.

4.3 Résultats monolingues

Le Tableau 1 présente les performances lorsque chaque langue est entraînée indépendam-
ment.
Analyse. Le WER évalue les erreurs par mot, tandis que BLEU et ROUGE mesurent la si-
milarité via le recouvrement de n-grammes. MonoASR dépasse largement MMS sur le ka-
byle et le français, montrant qu’un seul espace de paramètres, conditionné par des tokens de
langue, capture mieux les spécificités linguistiques que des adaptateurs isolés. Pour l’arabe, les

Langue Modèle WER ❴ BLEU ❫ ROUGE-1 ❫ ROUGE-2 ❫ ROUGE-L ❫

Kabyle MMS 0.562 0.280 0.691 0.504 0.690
MonoASR 0.291 0.482 0.806 0.662 0.806

Arabe MMS 0.458 0.325 - - -
MonoASR 0.458 0.290 - - -

Français MMS 0.216 0.716 0.928 0.875 0.928
MonoASR 0.112 0.794 0.912 0.851 0.911

TAB. 1 – Résultats monolingues (MMS vs MonoASR). Les scores ROUGE ne sont pas fiables

pour l’arabe en raison de la tokenisation.
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deux modèles obtiennent des performances similaires en WER, mais les scores ROUGE sont
inexploitables en raison des diacritiques de l’écriture arabe et de l’absence de segmentation
explicite, qui compliquent la correspondance des caractères lors de l’évaluation. Le point clé
est que MonoASR atteint ces résultats avec moins de paramètres : au lieu de réentraîner un
adaptateur par langue (MMS), il recycle le même θ guidé par tl.

4.4 Résultats multilingues simultanés

Lorsque les trois langues sont entraînées conjointement (Tableaux 2, 3), MonoASR obtient
en moyenne unWER inférieur de 21.7% àMMS, avec des gains notables en BLEU et ROUGE.

Modèle WER ❴ BLEU ❫ ROUGE-1 ❫ ROUGE-2 ❫ ROUGE-L ❫

MMS 0.533 0.276 0.450 0.335 0.450
MonoASR 0.316 0.442 0.539 0.453 0.538

TAB. 2 – Résultats multilingues simultanés (moyenne sur toutes les langues).

Langue Modèle WER ❴ BLEU ❫ ROUGE-1 ❫ ROUGE-2 ❫ ROUGE-L ❫

Kabyle MMS 0.727 0.157 0.593 0.379 0.592
MonoASR 0.397 0.268 0.735 0.560 0.734

Arabe MMS 0.522 0.251 - - -
MonoASR 0.403 0.331 - - -

Français MMS 0.349 0.421 0.758 0.627 0.758
MonoASR 0.147 0.728 0.881 0.800 0.881

TAB. 3 – Résultats multilingues simultanés détaillés par langue. Les scores ROUGE ne sont

pas fiables pour l’arabe en raison de la tokenisation.

Analyse. Le kabyle et le français bénéficient fortement du partage de paramètres via ULP,
tandis que MMS souffre d’une fragmentation induite par les adaptateurs φl. Pour l’arabe, Mo-
noASR améliore modestement le WER et BLEU, mais les scores ROUGE restent ininter-
prétables. Ces résultats confirment que les tokens tl agissent comme des vecteurs-routeurs,
évitant les interférences entre langues tout en maximisant le transfert de connaissances.

4.5 Résultats multilingues progressifs

Enfin, nous considérons un scénario incrémental où les langues sont introduites progressi-
vement.
Analyse. MonoASR conserve un avantage net sur MMS dans tous les cas. La clé est que
l’introduction d’une nouvelle langue ne nécessite que l’ajout d’un token tl, alors queMMS doit
réentraîner un adaptateur φl entier, sensible aux faibles volumes de données. Ainsi, MonoASR
est naturellement plus extensible et frugal, en particulier dans des scénarios réalistes où de
nouvelles langues peu annotées doivent être intégrées.
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Langue Modèle WER ❴ BLEU ❫ ROUGE-1 ❫ ROUGE-2 ❫ ROUGE-L ❫

Kabyle MMS 0.562 0.280 0.691 0.504 0.690
MonoASR 0.268 0.349 0.826 0.691 0.826

Arabe MMS 0.454 0.331 - - -
MonoASR 0.376 0.323 - - -

Français MMS 0.215 0.718 0.929 0.877 0.929
MonoASR 0.120 0.762 0.900 0.830 0.900

TAB. 4 – Résultats multilingues progressifs. Les scores ROUGE ne sont pas fiables pour

l’arabe en raison de la tokenisation.

4.6 Résumé des observations

Les résultats expérimentaux mettent en évidence trois points majeurs :

— Frugalité paramétrique.MonoASR atteint de meilleures performances que MMS en
partageant tous ses paramètres, là où MMS gonfle son architecture avec un adaptateur
par langue.

— Meilleure généralisation. Les tokens de langue agissent comme des vecteurs-routeurs,
permettant de transférer efficacement les connaissances entre langues.

— Extensibilité. L’ajout d’une nouvelle langue dans MonoASR n’exige que l’apprentis-
sage d’un token, tandis que MMS nécessite un nouvel adaptateur coûteux et fragile sur
peu de données.

En somme, MonoASR établit un compromis favorable entre performance, extensibilité et fru-
galité, confirmant la pertinence de l’approche ULP pour la RAP multilingue.

5 Analyse qualitative

Nous présentons une analyse qualitative sur des transcriptions en kabyle, arabe et fran-
çais (voir Figure 2).MonoASR se rapproche systématiquement davantage des références que
MMS. En kabyle, MMS fusionne ou omet des morphèmes, tandis que MonoASR respecte
mieux les formes et l’ordre des mots. En arabe, MMS produit des confusions vocaliques, alors
que MonoASR reste fidèle à la référence. En français, MMS commet de petites omissions cor-
rigées par MonoASR. Ces observations confirment les résultats quantitatifs : MonoASR réduit
les erreurs lexicales et grammaticales, surtout dans les langues faiblement annotées, validant
l’efficacité de la Projection Linguistique Universelle (ULP).
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Référence:

MMS:

MonoASR:

Audio

Werǧin i d-tban tecbeḥ am yimir

Werǧin yi tban t cebḥam yimir

Werǧin i d-tban tecbeḥ am yimir

Référence:

MMS:

MonoASR:

Audio

Ilaq-iyi ad ɣreɣ ugar n yidlisen

Ilaq-iy ad ɣereɣ ugar yidlisen

Ilaq-iyi ad ɣreɣ ugar n yidlisen

Référence:

MMS:

MonoASR:

Audio

Yekfa-yasent-id lweqt

Ekfayasent-id lweqt

Yekfa-yasent-id lweqt

Référence:

MMS:

MonoASR:

Audio

Netemεawan nek d tom

Netemεawanek d tom

Nettemεawan nekk d tom

Référence:

MMS:

MonoASR:

Audio

S uṭaksi i truḥ ɣer sbiṭar

Suṭak s itruḥ ɣer sbiṭar

S uṭaksi i truḥ ɣer sbiṭar

Référence:

MMS:

MonoASR:

Audio

Ad ṛuḥeɣ ɣer ustṛalya

D ṛuḥeɣer ustṛalya

Ad ṛuḥeɣ ɣer ustṛalya

Référence:

MMS:

MonoASR:

Audio

رَصَدَتْ أرَْبعَةََ مَلاَیینٍ وَخَمْسِمِئةٍَ

رَسَدَتْ أرَْبعَةََ مَلاَیِینٍ وَخَمْسِ مِئةٍَ

رَصَدَتْ أرَْبعَةََ مَلاَیینٍ وَخَمْسِمِئةٍَ

Référence:

MMS:

MonoASR:

Audio

إلاَِّ أنََّ التَّرَاجُعَ

إِلىَ أنََّ التَّرَاجُعَ

إلاَِّ أنََّ التَّرَاجُعَ

Référence:

MMS:

MonoASR:

Audio

ناَعِیَّةْ فِي مَدِینةَْ لِجْبِیلْ الصِّ

ناَعِیَّةْ مَدِینةَْ لِجْبِي لِ ِلصِّ

ناَعِیَّةْ فِي مَدِینةَْ لِجْبِیلْ الصِّ

Référence:

MMS:

MonoASR:

Audio

إفِْتِتاَحِ مَعرَِضِ باَرِیس لِلطَّائرَِات

إفِْتِتاَحِ مَعْرِذِ باَرِیز لِلطََّائرَِات

إفِْتِتاَحِ مَعرَِضِ باَرِیس لِلطَّائرَِات

Référence:

MMS:

MonoASR:

Audio

حْتِیاَجَاتِ لِیاَضَةِ ذَوِي الاِْ

یاَفةَِ ذَوِْ الاِحْتِیاَجَاتِ ارِّْ

وَرِیاَضَةِ ذَوِي الاِحْتیِاَجَاتِ

Référence:

MMS:

MonoASR:

Audio

Qui n'a rien ne craint rien

Qui n'a rien ne craint rien

Qui n'a rien ne craint rien

Référence:

MMS:

MonoASR:

Audio

Les absents ont toujours tort

Les absents ont toujours tort

Les absents ont toujours tort

Référence:

MMS:

MonoASR:

Audio

Au royaume des aveugles

Au royaume des aveugle

Au royaume des aveugles

Référence:

MMS:

MonoASR:

Audio

Les amis partagent un repas

Les amix partagent un repas

Les amis partagent un repas

Référence:

MMS:

MonoASR:

Audio

D'où venez-vous?

Doù venez-vous?

D'où venez-vous?Référence:

MMS:

MonoASR:

Audio

وَطَلبََ الْمُتظََھِرُونَ بعِدََمِ تدََخُلِ

وعطَالبََ الْمُتبَھَِرنَ بِعدََمِ تدََخُلِ

و طَالبََ الْمُتظََاھِرُوْنَ بعِدََمِ تدََخُلِ 

Référence:

MMS:

MonoASR:

Audio

C'est à droite ou à gauche

C'est à droite ou à gauche

C'est à droite ou à gauche

Kabyle Arabe Français

FIG. 2 – Analyse qualitative : comparaison des transcriptions produites par MMS et Mono-

ASR avec la transcription de référence, c’est-à-dire la version correcte attendue, pour trois

langues (kabyle, arabe et français). Cette comparaison illustre les différences de fidélité entre

les modèles par rapport au texte de référence.

✲ ✶✼✽ ✲
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6 Conclusion

Dans ce travail, nous avons proposé MonoASR, un modèle de reconnaissance automatique

de la parole multilingue reposant sur une architecture unifiée d’encodeur intégrant un mé-

canisme de Projection Linguistique Universelle (ULP). En conditionnant les représentations

audio par des tokens de langue spécifiques, MonoASR parvient à équilibrer efficacement le

partage des paramètres et la spécificité linguistique. Nos expériences menées sur trois langues

typologiquement diverses — le kabyle (langue amazighe appartenant à la famille des langues

nord-africaines), l’arabe et le français — démontrent que MonoASR surpasse systématique-

ment MMS, en particulier dans les contextes de faibles ressources et d’apprentissage multi-

lingue. Comme perspectives, nous prévoyons d’évaluer MonoASR sur des jeux de données

multilingues plus vastes et face à des systèmes de référence plus variés, afin de valider da-

vantage sa capacité à passer à l’échelle. Nous envisageons également d’explorer des stratégies

de type « Mélange d’Experts (MoE) » pour mieux intégrer la diversité linguistique, ce qui

pourrait renforcer la spécialisation et l’efficacité dans des systèmes de reconnaissance massi-

vement multilingues. Enfin, nous proposons d’investiguer l’utilisation de têtes de modélisation

du langage distinctes, chacune adaptée au vocabulaire d’une langue spécifique, plutôt que de

recourir à un vocabulaire partagé entre toutes les langues. Cette approche permettrait de réduire

l’espace softmax par langue, diminuant ainsi le nombre de scores de probabilité en compéti-

tion lors du décodage, ce qui pourrait améliorer les performances et réduire la confusion entre

langues.
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Summary

Automatic Speech Recognition (ASR) converts spoken language into text and remains a

major challenge. Recent models, such as Massively Multilingual Speech (MMS), cover hun-

dreds of languages but require the addition of language-specific adapters, which increases

parameter cost and hinders scalability, especially for low-resource languages. We introduce

MonoASR, a frugal and unified multilingual system that avoids such adapters through a Uni-

versal Language Projection (ULP). ULP associates a learned language token with acoustic rep-

resentations, enabling the same model and parameters to handle different languages. Evaluated

on French (a high-resource language), Arabic, and Kabyle 2 (underrepresented and complex

languages), MonoASR achieves lower word error rates (WER) than MMS, demonstrating its

robustness, generalization ability, and suitability for low-cost multilingual transcription. Code

is available at : https://github.com/ilyesqlm/MonoASR

2. It is one of the Tamazight languages, part of the North African language family.
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