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Résumé. La littérature scientifique concernant les données spatio-temporelle
se concentre principalement sur la prédiction de trajectoires d’objets mobiles
ou I’observation d’événements sur des zones géographiques fixes. Peu d’études
abordent I’analyse prédictive des variations dynamiques de zones spatiales elles-
mémes dans le temps. Cette recherche propose une méthodologie duale pour mo-
déliser I’évolution de la piraterie maritime (~350 incidents/an mondialement) :
(1) prédiction quantitative a résolution macroscopique (~4000 km/cellule) pour
I’allocation stratégique des ressources, et (2) classification qualitative a réso-
lution mésoscopique (~1000 km/cellule) pour détecter les transitions spatiales
régionales. L’évaluation sur 15947 incidents (1978-2024) révele que la valida-
tion standard surestime systématiquement les modeles complexes, notamment
en régression ou LSTM est bien moins efficace en validation walk-forward.
En classification, tous les modeles se dégradent en walk-forward, mais Logis-
tic Regression démontre une robustesse avec une dégradation minime, devenant
le meilleur modele en validation temporelle stricte. L’architecture hybride pro-
posée (Ridge pour la régression et LSTM+Logistic pour la classification) offre
une robustesse temporelle pour la surveillance opérationnelle.

1 Introduction

La piraterie maritime moderne représente un défi sécuritaire et économique persistant pour
le commerce international, avec un cofit global estimé a plusieurs milliards d’euros annuel-
lement Bowden et al. (2010). Cette problématique ne se limite pas aux pertes financieres di-
rectes : elle affecte également la stabilité des chaines d’approvisionnement mondiales et génere
des répercussions géopolitiques importantes dans les régions affectées. De ce fait, elle a été
étudiée par de nombreuses disciplines Merino Laso et Salmon (2025).

L’observation des patterns géographiques de la piraterie révele une caractéristique fonda-
mentale souvent négligée dans la littérature existante : la mobilité spatiale des foyers d’acti-
vité pirate. Contrairement aux approches traditionnelles qui congoivent les « zones a risque
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» comme des entités géographiques fixes, ’analyse empirique démontre que ces zones évo-
luent considérablement au cours du temps. La Figure 1 illustre cette dynamique pour le Golfe
d’Aden et la Somalie, zone emblématique de la piraterie moderne.

EVOLUTION TEMPORELLE - GOLFE D'ADEN & SOMALIE

1990-1994 1995-1999 2000-2004 2005-2009
(25 incidents) (89 incidents) (202 incidents) (844 incidents)

-

Incidents par an (lissé)

2010-2014 2015-2019 2020-2023
(927 incidents) (149 incidents) (102 incidents)

\ -

FIG. 1 — Evolution spatio-temporelle de la piraterie dans le Golfe d’Aden et Somalie (1990-
2023). La zone connait une émergence progressive (1990-1999 : 25 incidents — 2005-2009 :
844 incidents), un pic historique (2010-2014 : 927 incidents) puis un déclin rapide suite aux
déploiements militaires internationaux (2020-2023 : 102 incidents).

Une approche multi-échelles peut permettre de répondre a des besoins opérationnels dis-
tincts tout en prenant en compte la variation de densité des zones de piraterie. Cependant, le
choix de ces échelles est contraint par une réalit€ empirique : la piraterie maritime reste un
phénomene relativement rare a 1’échelle mondiale, avec environ 350 incidents documentés par
an répartis sur I’ensemble des océans (15 947 incidents sur 46 ans). Cette rareté impose des ré-
solutions spatiales suffisamment grossieres pour maintenir un rapport signal/bruit acceptable.

Notre approche cible principalement la planification stratégique (allocation budgétaire an-
nuelle, déploiement de forces navales) plutdt que les interventions tactiques immédiates. A
I’échelle macro (grilles 5x5, 10x10), les décideurs ont besoin de prédictions quantitatives pour
I’allocation stratégique des ressources a 1’échelle océanique. Ces maillages grossiers (environ
4000 km par cellule) optimisent le rapport signal/bruit, mais masquent les dynamiques émer-
gentes régionales. A 1’échelle méso (grilles 15x15, 20x20), les acteurs opérationnels requierent
une détection qualitative des transitions spatiales. Ces maillages plus fins (environ 1000 km par
cellule) offrent une sensibilité spatiale accrue au prix d’une dégradation prédictive quantitative.

Un autre enjeu méthodologique est au cceur de cette étude : a savoir comment valider ri-
goureusement des modeles de prédiction temporelle. La validation standard est efficace mais
permet aux modeles d’apprendre sur toute la plage temporelle, incluant des périodes posté-
rieures au test. Cette fuite d’information temporelle peut artificiellement gonfler les perfor-
mances, particulierement pour les modeles complexes comme LSTM capables de mémoriser
des patterns spécifiques Cerqueira et al. (2019).

Le travail développé dans cette étude s’intéresse aux questions suivantes :
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1. QR1 : Quelle est la performance relative des modeles (LSTM, Ridge, Logistic, RF) (c.f.
Section 3.3.2) selon une validation temporelle stricte vs standard (c.f. Section 3.3.3)?

2. QR2 : L’approche duale (régression grossiere + classification fine) permet-elle de ré-
pondre efficacement aux besoins opérationnels distincts ?

3. QR3: Quel est 'impact relatif de la résolution spatiale, de la fréquence temporelle et
de I’architecture sur la performance prédictive ?

4. QR4 : Comment concevoir un systeme opérationnel exploitant les forces complémen-
taires des différentes résolutions spatiales ?

Les contributions principales de ce travail sont les suivantes :

1. Contribution méthodologique : Premiére comparaison systématique de la validation
simple vs. walk-forward en prédiction spatio-temporelle sécuritaire, révélant une inver-
sion de hiérarchie des modeles selon le protocole de validation.

2. Contribution architecturale : Proposition et validation d’une approche duale multi-
résolution combinant la régression Ridge (macro) et la classification LSTM+Logistic
(méso) pour répondre aux besoins opérationnels distincts.

3. Contribution empirique : Analyse de I’'impact du déséquilibre de classes et valida-
tion de stratégies de sous-échantillonnage permettant d’améliorer significativement la
détection des transitions minoritaires critiques.

La suite de I’article est organisée comme suit : la Section 2 présente 1’état de 1’art sur la
prédiction spatio-temporelle et la piraterie maritime. La Section 3 détaille notre méthodologie
duale multi-résolution. La Section 4 présente les résultats expérimentaux. La Section 5 discute
les implications et propose une architecture opérationnelle. La Section 6 conclut sur les apports
et perspectives.

2 EKtat de art

Les approches existantes qui pourront €tre appliquées a la prédiction de la piraterie ma-
ritime peuvent étre regroupées en trois catégories principales : les approches géographiques
traditionnelles concernant la piraterie, la modélisation prédictive moderne, et les considéra-
tions méthodologiques de validation temporelle.

Les premieres études géographiques se sont concentrées sur 1’identification de « hotspots
» statiques, utilisant des techniques de cartographie des densités d’incidents pour définir des
zones a risque élevé Marchione et Johnson (2013); Zhou et al. (2023). Ces approches, bien que
fondatrices, présentent une limitation fondamentale : la conception statique de I’espace géogra-
phique, inadaptée a la nature dynamique de la piraterie. Plus récemment, Li et Yang (2023) ont
développé une méthodologie de fouille de données spatio-temporelles appliquée aux incidents
de piraterie, intégrant des techniques de clustering pour identifier les concentrations géogra-
phiques d’attaques. Certains travaux Salmon et Merino Laso (2024) ont identifié concrétement
cette évolution spatio-temporelle en analysant les déplacements des zones de piraterie.

L’ application des techniques d’apprentissage automatique a ouvert de nouvelles perspec-
tives méthodologiques. Shortland et Vothknecht (2011) ont utilisé des modeles de foréts aléa-
toires pour prédire la probabilité d’attaques en fonction de variables économiques et sécuri-
taires. Plus récemment, Talpur et al. (2025) ont proposé une revue exhaustive sur I’IA en sécu-
rité maritime, couvrant notamment les LSTM pour la détection d’anomalies. D’ autres travaux
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Qin et al. (2025) utilisent une architecture hybride (LSTM, GRU avec des mécanismes d’at-
tention) pour la prédiction criminelle avec des résultats surpassant les modeles de référence.

La littérature récente en apprentissage temporel a souligné I’importance critique de la va-
lidation rigoureuse. Bergmeir et Benitez (2012) démontrent que la validation croisée standard
peut conduire a des estimations optimistes des performances dans les séries temporelles. Cer-
queira et al. (2019) proposent un cadre systématique pour 1’évaluation des modeles prédictifs
temporels, mettant en garde contre les fuites d’information.

L’analyse critique de la littérature révele plusieurs limitations. Premierement, la quasi-
totalité des études adopte une résolution spatiale unique, ignorant le compromis entre la préci-
sion prédictive et la capacité de détection. Les travaux référencés dans Merino Laso et Salmon
(2025) et Talpur et al. (2025) confirment cette limitation. Deuxieémement, 1’absence d’une ap-
proche duale exploitant les complémentarités entre échelles spatiales pour répondre a des be-
soins opérationnels distincts. Enfin, une évaluation insuffisamment rigoureuse sur des données
temporelles. Notre étude s’inscrit dans cette lignée en appliquant une validation walk-forward
rigoureuse exhaustive sur un probléme de sécurité maritime.

3 Meéthodologie

3.1 Corpus et prétraitement

Notre approche repose sur 1’intégration de trois sources de données internationales :

— IMB (International Maritime Bureau) : incidents documentés entre 1993-2020 avec
géolocalisation précise Benden et al. (2021)

— IMO-GISIS (International Maritime Organization) : Piracy and Armed Robbery
(PAR) associé au Global Integrated Shipping Information System (GISIS) collectées
par I’OMI couvrant 2006 4 aujourd hui !

— ASAM (Anti-Shipping Activity Messages)> : messages d’alerte avec informations
détaillées (type de navire visé, la date, la position, ainsi que la description de 1’attaque)

L’ analyse porte sur 15.947 incidents de piraterie documentés entre 1978 et 2024, fusionnés

apres déduplication spatio-temporelle (21266 incidents bruts — 15947 uniques). Cette période
de 46 années permet d’observer des cycles complets d’évolution des activités pirates.

3.2 Approche duale multi-résolution

Notre méthodologie exploite stratégiquement deux discrétisations spatiales complémen-
taires répondant a des besoins opérationnels distincts (c.f. Tableau 1). Le choix de ces résolu-
tions est contraint par la rareté intrinseque des événements de piraterie : avec seulement 15947
incidents documentés sur 46 années a 1’échelle mondiale (soit environ 350 incidents par an
répartis sur tous les océans), une granularité spatiale trop fine résulterait en une faible densité
excessive des données, compromettant la capacité prédictive des modeles.

1. https://gisis.imo.org/
2. https://msi.nga.mil/Piracy

-184-



L. Salmon et PM. Laso

Caractéristique | Maillage grossier Maillage fin
(5x5, 10x10) (15x15, 20%x20)
Objectif Prédiction quantitative Classification qualitative
Besoin Allocation stratégique océanique Détection transitions régionales
Résolution environ 4000 km/cellule environ 1000 km/cellule
Cellules actives 17-39 Jusqu’a 89
Seuil activité >5 incidents >3 incidents
Densité incidents | 50-200/cellule 10-50/cellule
Usage Planification budgétaire annuelle et Déploiement | Ajustement zones patrouille et Alerte
forces navales précoce nouveaux risques
Justification Signal/bruit optimisé Dimensionnalité réduite Couverture géographique plus fine

TAB. 1 — Comparaison des stratégies de maillage pour I’analyse des incidents maritimes

3.3 Espace de configurations et architectures
3.3.1 Configurations testées

Notre évaluation exhaustive explore systématiquement plusieurs dimensions pour identifier
les configurations optimales :

— Dimension spatiale : Résolutions de 5x5 a 20x20, explorant le compromis den-
sité/granularité.

— Dimension temporelle : Fréquences mensuelle (M), trimestrielle (Q) et semestrielle
(6M) pour capturer différents cycles temporels de la piraterie.

— Protocoles de validation : Validation standard (split aléatoire 80/20) vs validation
walk-forward (9 fenétres de 2 ans) pour évaluer I’impact de la fuite temporelle.

— Classification spécifique : Différentes valeurs de seuils S (stable), S. (changement)
et S, (émergence) testées empiriquement.

— Gestion du déséquilibre : Six stratégies de sous-échantillonnage de la classe majori-
taire Stable (de 100% a 5%).

3.3.2 Description des architectures

Voici les différentes architectures testées sur I’ensemble des configurations décrites dans la
section précédente, les détails spécifiques de chaque architecture sont donnés en Tableau 2 :

Ridge Regression : Régression linéaire avec régularisation L2 (parametre a=1.0). La pé-
nalisation L2 ajoute le terme o ) w? ala fonction de coft, controlant la complexité du modele
en pénalisant les coefficients élevés pour éviter le surajustement.

LSTM (Long Short-Term Memory) : Réseau de neurones récurrent avec mémoire a long
terme, architecture a 2 couches (32— 16 neurones) avec dropout et batch normalization. Ca-
pable de capturer des dépendances temporelles grace a ses portes d’oubli, d’entrée et de sortie.

Logistic Regression : Modele linéaire pour classification probabiliste multinomiale avec
régularisation L2 (C=0.1). Utilise la fonction softmax pour transformer les scores linéaires en
probabilités de classes.

Random Forest : Ensemble de 200 arbres de décision avec max_depth=20, combinant
leurs prédictions par vote majoritaire (classification) ou moyenne (régression) pour améliorer
la robustesse.
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Elément Random Forest Ridge Reg. Logistic Reg. LSTM Light

Type Ensemble (Arbres) Régression Classification Réseau séquentiel
linéaire linéaire

Architecture 200 estimateurs Régression L2 Multinomial 2 couches LSTM

Parametres max_depth=20 alpha=1.0 C=0.1 32— 16

Régularisation min_samples_split=5 | L2 L2 (saga) Dropout + BN

Optimiseur - - - Adam (0.001)

Loss Gini/Entropie MSE Multinomial MSE/Cross-entropy

Objectif Robustesse Stabilité Classification Séquences temp.

TAB. 2 — Comparaison détaillée des architectures de modeéles testées

3.3.3 Meéthodes de validation utilisées

Les deux méthodes de validation utilisées dans cet article sont la validation standard et la
validation walk-forward. La validation standard correspond a un split aléatoire 80/20 ou les
données sont divisées sans considération temporelle. Les données sont mélangées aléatoire-
ment, permettant au modele d’apprendre potentiellement sur des périodes futures par rapport
au test, créant une « fuite d’information temporelle ». La validation walk-forward est une di-
vision séquentielle stricte ol I’entrainement sur [to,t1] précéde toujours le test sur [t1,ts].
Aucune donnée future n’est accessible pendant 1’entralnement, garantissant un test réaliste des
capacités prédictives.

3.4 Variables d’entrée

Pour chaque séquence temporelle de 6 trimestres, le modele utilise 6 variables d’entrée par
pas de temps (c.f. Equation 1). Cette approche capture le niveau d’activité, la volatilité, les
tendances directionnelles et la normalisation statistique, permettant au modele de modéliser
plusieurs échelles temporelles. D’autres variables testées (coordonnées spatiales Xx,y, valeurs
des cellules voisines) dégradaient significativement les performances et ont été écartées.

o (valeur brute)
Lt (moyenne mobile locale)
_ o (écart-type, volatilité)
by = Ay (tendance : z; — z¢_5) M
maxy (pic historique)
Zt (z-score normalisé)

3.5 Classification des transitions spatiales

Pour chaque cellule active des maillages fins, nous classifions la transition entre t et ¢ + 1
selon 5 catégories opérationnelles (c.f. Tableau 3. Trois configurations de seuils ont été éva-
luées empiriquement, variant de trés sensible (S; = 5,5, = 15,5, = 1) a agressif (Ss =
25,5, = 50,5, = 3), avec la configuration médiane modérée (S5 = 20, S, = 35, S, = 2).

3.6 Stratégies de sous-échantillonnage

L’augmentation de la résolution spatiale engendre un déséquilibre significatif des classes
de transition : la classe Stable devient dominante (>70% des échantillons pour 20x20), tandis
que les transitions (Emergence, Intensification, Déclin) restent minoritaires. Ce déséquilibre
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Transition Condition Signification opérationnelle
Emergence zy <0etwpyr > Se Nouvelle zone a risque
Intensification | A > +S.% Risque croissant

Stable —S:% < A< +5:% | Statu quo

Déclin A< -S5% Risque décroissant
Extinction zy > letxi41 =0 Fin d’activité

TAB. 3 — Classification des transitions spatiales. Les seuils S (stable), S. (changement) et
Se (émergence) sont évalués lors de la classification.

nuit a la capacité des modeles, particulierement LSTM, & détecter les motifs rares mais opé-
rationnellement importants. Pour chaque stratégie, nous conservons 1’intégralité des classes
minoritaires (Emergence, Intensification, Déclin, Extinction) et sous-échantillonnons aléatoi-
rement la classe Stable selon le ratio spécifié (c.f. Tableau 4)

Stratégie Ratio Stable | Description

no_undersampling 100% Aucun sous-échantillonnage (baseline)
balanced_50 50% Classe stable réduite a 50%
balanced_25 25% Classe stable réduite a 25%
balanced_10 10% Classe stable réduite a 10%

balanced_5 5% Classe stable réduite a 5%
equal_classes Auto Toutes les classes égales a la plus petite

TAB. 4 — Stratégies de sous-échantillonnage

4 Résultats

4.1 Résultats de la régression quantitative (maillage grossier)

4.1.1 Impact de la résolution spatiale et de la fréquence temporelle

Configuration RZmoy. R?max  Paramétre Densité %0
Résolution spatiale

5%5 0,729 0,786 ~17 cellules 65%
10x10 0,607 0,737 ~39 cellules 70%
15x15 0,560 0,658 ~60 cellules 85%
20x20 0,516 0,602 ~89 cellules >90%
30x30 0,505 0,564 ~120 cellules >95%
Fréquence temporelle

Trimestriel (Q) 0,637 0,786 18 mois -
Mensuel (M) 0,619 0,779 6 mois -
Semestriel (6M) 0,494 0,701 36 mois -

TAB. 5 — Impact combiné résolution spatiale et fréquence temporelle (split 80-20)

Analyse : L’affinement spatial dégrade la performance (-31% 5x5—30x30) par faiblesse
de densité croissante (65%—95% cellules vides), diluant le signal des 15947 incidents. Le
trimestriel optimise le compromis signal/bruit, aligné aux cycles pirates (Q vs 6M : +29%).
La résolution grossiere (5x5, 50-200 incidents/cellule) reste indispensable pour la régression
quantitative.
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4.1.2 Régression : Impact du protocole de validation

L’évaluation comparative révele un effet méthodologique important sur 1’estimation des
performances. Le tableau 6 présente les résultats pour la fréquence trimestrielle (Q), optimale
selon I’analyse de la section précédente.

Valid. Simple (80/20) | Walk-Forward (9 fenétres)
Config LSTM Ridge LSTM Ridge Persist
5%5Q 0,726 0,786 0,619 0,753 0,708
10x10Q | 0,706 0,543 0,591 0,623 0,542
15x15Q | 0,607 0,661 0,549 0,607 0,506
20x20Q | 0,631 0,531 0,489 0,581 0,484
Moy. 0,663 0,630 0,562 0,641 0,560

TAB. 6 — Performances R? en régression selon méthodologie (Trimestriel)

En validation simple (80/20), LSTM apparait compétitif avec Ridge sur certaines résolu-
tions (5x5, 10x10, 20x20), suggérant une architecture capable de capturer des dynamiques
complexes. Cependant, la validation walk-forward révele une réalité différente : Ridge sur-
passe systématiquement LSTM sur toutes les résolutions testées, avec des écarts allant de
+5,4% a +21,6%. La dégradation moyenne de -15,8% démontre que LSTM bénéficie d’une
fuite d’information temporelle en validation simple.

4.2 Résultats de la classification qualitative (maillages fins)

L’analyse de classification des transitions spatiales est donnée par le tableau 7 présen-
tant les performances Fl-macro pour la fréquence trimestrielle optimale avec le threshold
“very_sensitive”.

Valid. Simple (80/20) Walk-Forward (9 fenétres)
Config LSTM  Logistic RF | LSTM  Logistic RF

5%x5Q 0,545 0,556 0,586 | 0,519 0,547 0,526
10x10Q | 0,594 0,570 0,596 | 0,528 0,567 0,545
15x15Q | 0,616 0,587 0,606 | 0,537 0,562 0,538
20x20Q | 0,626 0,607 0,623 | 0,577 0,586 0,569
Moy. 0,595 0,580 0,603 | 0,540 0,566 0,545

TAB. 7 — Performances FI1-macro en classification selon méthodologie (Trimestriel Q, thre-
shold very_sensitive sans sous échantillonnage

4.2.1 Dégradation uniforme mais différenciée des modeles

L’analyse révele un phénomene cohérent avec les observations en régression : tous les mo-
deles se dégradent lors du passage en validation walk-forward, confirmant que le split aléatoire
surestime systématiquement les performances par fuite d’information temporelle. LSTM et
Random Forest connaissent une dégradation similaire (-9,2% pour LSTM et -9,6% pour Ran-
dom Forest). A I'inverse la Logistic Regression subit une dégradation de -2,4% minime par
rapport aux architectures complexes.

Le Tableau 8 présente les résultats obtenus pour chaque classe :
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15x15 20%20

Transition Logistic LSTM RF Logistic LSTM RF

Stable 0,778 0,896 0,800 0,805 0914 0,815
Extinction 0,587 0,626 0,566 0,611 0,626 0,596
Intensification 0,481 0,424 0,441 0,512 0,456 0,484
Déclin 0,551 0,520 0,520 0,603 0,584 0,590
Emergence 0,413 0,220 0,363 0,399 0,307 0,360
F1-macro 0,562 0,537 0,538 0,586 0,577 0,569

TAB. 8 — Performance par classe de transition pour les maillages fins 15x15 et 20x20 (Walk-
Forward validation, sans sous-échantillonnage)

Bien que LSTM atteigne des performances compétitives en F1-macro globale, cette per-
formance masque une limitation opérationnelle importante : le modele sous-performe signifi-
cativement sur la classe Emergence sur toutes les grilles.

4.2.2 TImpact du sous-échantillonnage sur la détection des transitions minoritaires

Face au déséquilibre des classes observé, nous avons évalué I'impact des stratégies de
sous-échantillonnage (Tableau 9). LSTM montre une sensibilité importante au déséquilibre :
la stratégie balanced_25 améliore F1-macro de +5,5% et Fl-Emergence de +53,7%. Logistic
Regression démontre une robustesse naturelle : la meilleure stratégie (balanced_10) n’améliore
que de +0,5% F1-macro et +1,3% Fl—Emergence.

F1 Stable Emergence Intensification Déclin  Extinction
LSTM
sans échantillonnage 0,577 0,914 0,307 0,456 0,584 0,626
best (25%) 0,609 0,905 0,472 0,455 0,587 0,625
Gain +55% -1,0% +53,7% -0,2% +0,5% -0,2%
Logistic
sans échantillonnage 0,586 0,805 0,399 0,512 0,603 0,611
best (10%) 0,589 0812 0,404 0,516 0,602 0,613
Gain +0,5%  +0,9% +1,3% +0,8% +0,3% +0,8%

TAB. 9 — Impact comparatif du sous-échantillonnage (20x20 Q Walk-Forward)

5 Discussion

5.1 Implications méthodologiques et architecture proposée

La validation révele un effet méthodologique cohérent sur I’ensemble des taches et archi-
tectures. En régression comme en classification, le split aléatoire surestime systématiquement
les performances par fuite d’information temporelle. LSTM subit une dégradation de -15,8%
en régression et -9,2% en classification lors du passage au walk-forward. RF montre un pat-
tern similaire en classification (-9,6%). Cependant, I’observation la plus significative concerne
Logistic Regression : contrairement aux architectures complexes, elle démontre une certaine
stabilité temporelle avec une dégradation minime en classification. Cela s’explique par 1’ab-
sence de capacité de mémorisation excessive et la régularisation L2 qui pénalise uniformément
tous les coefficients.
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De plus, les résultats montrent une sensibilité différente entre architectures face au déséqui-
libre de classes. LSTM nécessite un sous-échantillonnage agressif (conservation d’uniquement
25% de la classe Stable) pour améliorer la détection d’Emergence de +53,7%. Sa mémoire ré-
currente accumule les biais vers les classes fréquentes, créant une dépendance aux transitions
majoritaires. A I'inverse, Logistic Regression démontre une robustesse naturelle importante
aux déséquilibres des classes.

Basée sur les résultats walk-forward validés, nous proposons une architecture a trois ni-
veaux (c.f. Tableau 10). Cette architecture exploite les forces complémentaires : Ridge pour
la prédiction quantitative robuste, LSTM (avec rééquilibrage) pour la détection des transitions
rares, Logistic pour la validation et I’interprétabilité.

Niv. | Objectif Modgéle (Performance) Avantages

1 Stratégique | Ridge 5x5 Q (R2=0,753) Planification budgétaire

2 Monitoring | LSTM 20x20 Q 25% (F1=0,609) Détection Emergence (+53,7%)
3 Validation Logistic 20x20 Q (F1-Intens=0,512) | Robustesse et interprétabilité

TAB. 10 — Architecture a trois niveaux pour ’analyse de la piraterie maritime

5.2 Limites et perspectives

Notre approche présente plusieurs limitations importantes. Premierement, 1’hypothese de
stationnarité locale suppose la persistance des actions récentes, mais elle est vulnérable aux
ruptures géopolitiques soudaines (déploiements militaires, coups d’Etat). Deuxiémement, 1’ab-
sence de variables externes comme le prix du pétrole ou les indices de fragilité étatique limite
notre capacité a anticiper les changements structurels.

Une contrainte fondamentale réside dans la rareté intrinséque des données : avec seulement
15947 incidents sur 46 ans a I’échelle mondiale, nous sommes contraints a des résolutions spa-
tiales relativement grossieres (1000-4000 km par cellule) pour maintenir un signal exploitable.
Des tests empiriques sur des maillages plus fins (3030, 40x40, 50x50) ont confirmé cette
limitation avec des performances dégradées (R? < 0.5, F1-macro < 0.4) et plus de 95% de cel-
lules vides. Cette limitation empéche 1’analyse a des échelles véritablement locales (dizaines
de kilometres) qui seraient pertinentes pour des décisions tactiques immédiates, mais reste
adaptée aux besoins stratégiques et de planification régionale.

Pour gérer ces limitations de granularité spatiale et permettre une transition vers des ap-
plications tactiques, plusieurs pistes sont envisageables. La premiere est une approche hiérar-
chique descendante ou les prédictions macro (5x5) pourraient servir de contraintes pour une
désagrégation spatiale fine. En s’inspirant des travaux de Berrocal et al. (2010) sur le downs-
caling statistique, nos prédictions grossieres pourraient étre utilisées comme distributions a
priori, affinées localement par des covariables haute résolution (densité du trafic AIS, distance
aux ports, conditions météorologiques). Cette approche permettrait de maintenir la cohérence
avec les prédictions stratégiques tout en offrant une résolution tactique. La deuxieme piste
est de faire un zoom adaptatif sur zones critiques. Pour les cellules identifiées comme "émer-
gentes" ou "intensifiées", une analyse locale a résolution plus fine (50-100 km) pourrait &tre
faite. Bien que l'incertitude augmente a cette échelle, les informations obtenues pourraient
guider le déploiement tactique des ressources.
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Concernant les autres perspectives de recherche, I’intégration multi-modale de données
AIS, des données sur I’incident (type de navire, activité du navire, informations sur les at-
taquants) et géopolitiques enrichirait le contexte décisionnel. L’exploration de techniques de
rééquilibrage de classes (SMOTE, génération synthétique par GAN) pourrait améliorer davan-
tage la détection des transitions rares Yang et al. (2024). La méthode SHAP (SHapley Additive
exPlanations) Lundberg et Lee (2017) permettrait d’expliquer I’impact des variables d’entrée
et d’éclairer les mécanismes sous-jacents des prédictions. Enfin, 1’extensibilité a d’autres en-
jeux sécuritaires (trafic de drogue, péche illégale) validerait la généralité de I’approche duale.

6 Conclusion

Cette recherche propose une approche duale innovante pour la prédiction spatio-temporelle
de la piraterie, combinant prédiction quantitative grossiere et classification qualitative plus fine.

Nous avons observé I’effet de surajustement temporel des LSTM en validation walk-
forward pour la régression et constaté de meilleurs résultats pour les modeles linéaires (Ridge,
Logistic) dans des conditions de validation rigoureuses. L’analyse du déséquilibre de classes
révele que le sous-échantillonnage améliore les performances de LSTM en classification, avec
des gains importants sur les transitions minoritaires, tout en maintenant la complémentarité
avec Logistic pour une couverture optimale. Les résultats de cet article valident une approche
duale exploitant les complémentarités entre résolutions spatiales : Ridge sur maillage 5x5
pour I’allocation stratégique océanique, LSTM (avec sous-échantillonnage a 25% de la classe
stable) sur maillage 20x20 pour le monitoring régional des transitions, complété par Logis-
tic (sans sous-échantillonnage) pour la validation spécialisée sur les classe Intensification et
Déclin.

L approche duale multi-résolution, validée sur 15947 incidents de 1978 a 2024, ouvre
la voie a une surveillance maritime adaptative répondant simultanément aux besoins macro-
décisionnels et méso-opérationnels. Les perspectives incluent I’intégration de données multi-
modales, I’exploration de techniques de rééquilibrage alternatives (SMOTE, GAN) ou encore
I’extension a d’autres domaines de la sécurité maritime.

Références

Benden, P., A. Feng, C. Howell, et G. V. Dalla Riva (2021). Crime at sea : A global database
of maritime pirate attacks (1993-2020). Journal of Open Humanities Data.

Bergmeir, C. et J. M. Benitez (2012). On the use of cross-validation for time series predictor
evaluation. Information Sciences 191, 192-213.

Berrocal, V. J., A. E. Gelfand, et D. M. Holland (2010). A spatio-temporal downscaler for
output from numerical models. Journal of Agricultural, Biological, and Environmental Sta-
tistics 15, 176-197.

Bowden, A., K. Hurlburt, E. Aloyo, C. Marts, et A. Lee (2010). The economic cost of maritime
piracy. Technical report, One Earth Future Foundation, Broomfield, CO. Working Paper.

Cerqueira, V., L. Torgo, et I. Mozetic (2019). Evaluating time series forecasting models : An
empirical study on performance estimation methods. CoRR abs/1905.11744.

-191-



Approche duale multi-échelle pour la prédiction adaptative de la piraterie maritime

Li, H. et Z. Yang (2023). Towards safe navigation environment : The imminent role of spatio-
temporal pattern mining in maritime piracy incidents analysis. Reliability Engineering &
System Safety 238, 109422.

Lundberg, S. M. et S.-1. Lee (2017). A unified approach to interpreting model predictions. In
Advances in neural information processing systems, Volume 30.

Marchione, E. et S. D. Johnson (2013). Spatial, temporal and spatio-temporal patterns of
maritime piracy. Journal of Research in Crime and Delinquency 50(4), 504-524.

Merino Laso, P. et L. Salmon (2025). Maritime piracy bibliometric analysis : A literature
overview and map review. The Journal of Navigation, 1-18.

Qin, Z., B. Wei, et C. Gao (2025). Innovative Isgtime model for crime spatiotemporal predic-
tion based on mindspore framework.

Salmon, L. et P. Merino Laso (2024). Analyse de données de piraterie en mer pour 1’obser-
vation des zones maritimes a risque. Gestion et Analyse de données Spatio-Temporelles
(GAST), 1-4.

Shortland, A. et M. Vothknecht (2011). Treasure mapped : Using satellite imagery to track the
developmental effects of somali piracy. Journal of Peace Research 48(6), 771-781.

Talpur, K., R. Hasan, I. Gocer, S. Ahmad, et Z. Bhuiyan (2025). Ai in maritime security :
Applications, challenges, future directions, and key data sources. Information 16(8), 658.

Yang, Y., H. A. Khorshidi, et U. Aickelin (2024). A review on over-sampling techniques in
classification of multi-class imbalanced datasets : insights for medical problems. Frontiers
in Digital Health Volume 6 - 2024.

Zhou, Y., J. Li, et M. Chen (2023). Discovering maritime-piracy hotspots : A study based on
ahp and spatio-temporal clustering. Annals of Operations Research 328(1), 345-367.

Summary

Scientific literature on spatio-temporal data primarily focuses on predicting trajectories of
moving objects or observing events over fixed geographical areas. Few studies address the
predictive analysis of dynamic variations of spatial areas themselves over time. This research
proposes a dual methodology to model the evolution of maritime piracy (~350 incidents/year
globally): (1) quantitative prediction at macroscopic resolution (~4000 km/cell) for strate-
gic resource allocation, and (2) qualitative classification at mesoscopic resolution (~1000
km/cell) to detect regional spatial transitions. Evaluation on 15,947 incidents (1978-2024)
reveals that standard validation systematically overestimates complex models, particularly in
regression where LSTM is significantly less effective in walk-forward validation. In classifica-
tion, all models deteriorate in walk-forward validation, but Logistic Regression demonstrates
robustness with degradation lower than complex architectures, becoming the best model un-
der strict temporal validation. The proposed hybrid architecture (Ridge for regression and
LSTM-+Logistic for classification) offers temporal robustness for operational monitoring.
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