
Amélioration de l’interprétabilité des explications de SHAP

grâce à la découverte de sous-groupes

Maëlle Moranges∗, Thomas Guyet∗

∗AIstroSight, Inria, Hospices Civils de Lyon, UCBL

maelle.moranges@inria.fr

Si les modèles prédictifs sont désormais largement employés en médecine, la question de

fournir des explications compréhensibles et cliniquement pertinentes reste un défi. SHAP (Lund-

berg et Lee, 2017), aujourd’hui largement utilisé, produit des explications locales et globales

mais présente plusieurs limites : 1) il indique l’importance moyenne des variables sans préciser

leurs effets concrets, 2) il ne capture pas les interactions entre variables et 3) il peut masquer des

comportements propres à des sous-populations. Les règles décisionnelles SI–ALORS consti-

tuent une alternative intéressante car elles sont proches du raisonnement clinique et permettent

de décrire des profils spécifiques. Toutefois, les approches existantes génèrent des règles uni-

quement locales (Ribeiro et al., 2018; Guidotti et al., 2019) ou uniquement globales (Yuan

et al., 2022). Pour répondre à ces limitations, nous proposons une méthode agnostique au mo-

dèle combinant SHAP et la découverte de sous-groupes (Wrobel, 1997), afin de produire des

règles cohérentes, multidimensionnelles, et dont les prémisses sont exploitables comme expli-

cations locales et globales.

La découverte de sous-groupes identifie des règlesR sous forme de conjonctions de condi-

tions décrivant un sous-groupe associé à une classe cible c. Par exemple, “age ∈ [80, 95[∧ gender =
female” forme une règle caractérisant un sous-groupe à risque de crise cardiaque. La qualité

d’un sous-groupe peut être évaluée par la WRAcc (Lavrač et al., 2004).

Nous proposons de faire une extraction de règles similaires en adaptant la mesure qualité

de la règle de sorte que la prémisse d’une règle n’implique que des termes qui correspondent à

des variables ayant des valeurs de Shapley élevées, i.e. qui sont fortement pris en compte par

le modèle pour forger la décision de la règle. On souhaite ainsi privilégier les sous-groupes

cohérents avec les contributions explicatives du modèle.

Nous proposons ainsi la WRAcc pondérée d’une règle R par les valeurs SHAP :
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où W (X) somme les contributions des valeurs de SHAP de toutes les variables de la règle R

pour tous les exemples d’un ensembleX ,D est l’ensemble des exemples et cov(R) représente
les exemples qui satisfont la prémisse de la règle R. L’indice (c) précise que les exemples de

ces ensembles doivent en plus être prédits dans la classe c par le modèle à expliquer.

Les règles maximisant WRAccφ sont recherchées via une beam search. Les deux para-

mètres d’entrée sont : la profondeur maximale et le nombre de règles par classe.
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Mieux interpréter SHAP grâce à la découverte de sous-groupes

WRAccφ(R) R c

0.084 prevalentHyp=0 → 0
0.076 male=0 ∧ prevalentHyp=0 → 0
0.076 male=0 → 0
0.073 age < 0.26 → 0
0.071 diabetes=0 ∧ prevalentHyp=0 → 0
0.071 BPMeds=0 ∧ prevalentHyp=0 → 0
0.069 prevalentHyp=0 ∧ prevalentStroke=0 → 0
0.063 BPMeds=0 ∧ male=0 → 0
0.084 prevalentHyp=1 → 1
0.082 age ≥ 0.74 → 1
0.077 sysBP ≥ 0.32 → 1
0.076 male=1 → 1
0.069 prevalentHyp=1 ∧ prevalentStroke=0 → 1
0.068 age ≥ 0.74 ∧ prevalentStroke=0 → 1
0.066 age ≥ 0.74 ∧ diabetes=0 → 1
0.065 prevalentHyp=1 ∧ sysBP ≥ 0.32 → 1

φ̄x(R) R c

0.2174 prevalentHyp=1 ∧ sysBP ≥ 0.32 → 1
0.1473 sysBP ≥ 0.32 → 1
0.0828 male=1 → 1
0.0701 prevalentHyp=1 → 1

FIG. 1 – Exemples d’explications globales (à gauche) et locales (à droite) pour le jeu framingham.

Les règles extraites offrent des explications globales, mais il est également possible d’en

dériver une explication locale. Pour une instance, nous retenons les règles globales qui la

couvrent et dont toutes les variables présentent une contribution SHAP positive. Elles sont

classées selon leur contribution moyenne et constituent l’explication locale.

Nous avons évalué l’approche sur quatre jeux de données médicaux (Framingham, Heart-

attack, Covid19, Obesity), chacun associé à un modèle performant. Les valeurs SHAP sont

obtenues via SHAP et les sous-groupes via pysubgroup. Pour évaluer les règles locales,

nous mesurons : (1) la fidélité (accord entre l’explication et le modèle), (2) la précision (accord

avec la vérité terrain), (3) la complétude (proportion d’instances expliquées), (4) la cohérence

(accord entre règles locales). Pour les règles globales, nous rapportons la WRAcc et le lift. Les

règles extraites présentent une fidélité élevée (> 0.9) sur les jeux de données binaires et une

bonne complétude (> 0.8). Elles ont des WRAcc toujours positives et des lifts supérieurs à 1,
confirmant leur pertinence pour caractériser les classes cibles.
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