
Morfetik : Une ressource lexicale morphologique extensible
et modulaire pour le français

Jaime Arias∗, Othman Boudarga∗, Aude Grezka∗

∗CNRS, Université Sorbonne Paris Nord, LIPN, F-93430 Villetaneuse, France
{arias,boudarga,grezka}@lipn.univ-paris13.fr

Résumé. Les ressources lexicales morphologiques, décrivant la structure in-
terne des mots et leurs formes fléchies, sont essentielles pour le traitement auto-
matique des langues (TAL) et la linguistique computationnelle.

Nous présentons MORFETIK, une ressource lexicale open-source complète pour
le français, capable de générer et d’identifier automatiquement toutes les formes
fléchies des mots (noms, verbes, adjectifs, locutions, etc.). Il offre une couver-
ture large du lexique contemporain et spécialisé, une architecture extensible et
modulaire, et une intégration aisée avec des ressources externes.

De même, nous illustrons son utilisation à travers deux études de cas et détaillons
son architecture, montrant comment sa modularité et son interopérabilité faci-
litent l’analyse de corpus, et le développement d’applications TAL.

1 Introduction

Une ressource lexicale est une base de données linguistique structurée qui rassemble des
informations sur les mots d’une langue, leurs formes, leurs significations et leurs relations. Elle
constitue un élément essentiel pour la recherche en traitement automatique des langues (TAL),
en linguistique computationnelle et en technologies du langage. Selon leur conception et leurs
objectifs, les ressources lexicales peuvent décrire différents aspects du lexique : lamorphologie

(formes et flexions des mots), la syntaxe (régimes et constructions), la sémantique (sens et
relations lexicales) ou encore la pragmatique.

Dans cet article, nous présentons MORFETIK, une ressource lexicale morphologique com-
plète et modulaire pour le français, conçue pour générer, structurer et exploiter automatique-
ment les formes fléchies du lexique (noms, adjectifs, déterminants, pronoms, verbes, adverbes,
prépositions, conjonctions, interjections, locutions, etc.). Elle permet d’obtenir, pour n’importe
quel mot français, l’ensemble de ses formes (pluriel des noms, féminin et pluriel des adjectifs,
formes conjuguées des verbes, etc.), ou bien, réciproquement, d’identifier le mot (la forme de
base, le “lemme”) correspondant à n’importe quelle forme fléchie.

MORFETIK est une ressource clé pour l’analyse, la recherche et le développement d’appli-
cations en TAL qui offre :

— une couverture lexicale très large du français contemporain et spécialisé (médecine,
minéralogie, etc.), plus de 240.000 lemmes ;



Morfetik : Une ressource lexicale morphologique extensible et modulaire pour le français

— un recensement lexical, réalisé par des linguistes à partir de nombreuses sources lexi-
cographiques (e.g., le Petit et le Grand Robert, GDEL, le Trésor de la langue française,
Bescherelle, etc.) garantissant la précision et la fiabilité des informations contenues
dans la ressource ;

— une génération automatique et systématique des formes fléchies (réduisant les erreurs
manuelles) ;

— une structuration normalisée et exploitable par des outils TAL modernes ; et
— un ancrage linguistique solide, prenant en compte les variations, les formes rares et les

défectivités.

En tant qu’application open-source, MORFETIK se distingue par sa modularité et son ou-
verture. Son architecture, composée d’une API et d’un frontend indépendants, permet leur
évolution séparée et assure une interopérabilité avec d’autres clients (e.g., un pipeline TAL, ou
une interface en ligne de commande (CLI)). De même, il permet une intégration facile de res-
sources externes, telles que FranceTerme, Neoveille ou Wiktionnaire. Enfin, il est extensible,
permettant l’enrichissement et la mise à jour continue des données, librement accessibles et
téléchargeables. Il constitue ainsi une brique linguistique fondamentale pour la lemmatisation
et l’étiquetage morpho-syntaxique ; l’analyse automatique de corpus ; la création ou l’enrichis-
sement d’autres ressources lexicographiques ; et l’enseignement assisté par ordinateur.

Dans le domaine du TAL, on retrouve plusieurs ressources lexicales morphologiques
comme le LEFFF (Sagot et al., 2006) ou encore le GLÀFF (Hathout et al., 2014), fondées
sur des approches théoriques variées et offrant des fonctionnalités distinctes. Ces ressources
ont servi de base à plusieurs outils de traitement automatique du français, notamment pour la
lemmatisation, l’étiquetage morpho-syntaxique et la reconnaissance d’entités nommées. Plus
récemment, des initiatives comme Neoveille (Cartier, 2017) ont permis d’enrichir la descrip-
tion lexicale à partir de données textuelles dynamiques, en y intégrant des métadonnées lin-
guistiques, temporelles et contextuelles afin de suivre l’évolution du lexique et l’émergence de
nouvelles formes.

Au niveau international, d’autres initiatives comme UniMorph (Batsuren et al., 2022) ou
UDLexicons (Sagot, 2018) ont cherché à normaliser la représentation morphologique des
langues à grande échelle, en proposant des formats unifiés pour la description des paradigmes
flexionnels et des catégories grammaticales. Dans ce contexte, MORFETIK s’inscrit dans la
continuité de ces travaux tout en apportant plusieurs contributions. La ressource repose sur un
moteur de flexion capable de générer les formes fléchies à partir de règles linguistiques forma-
lisées. Présenté initialement par Buvet et al. (2009), la plateforme visait à constituer un diction-
naire morphologique exhaustif de la langue française. Plus tard, Mathieu-Colas et al. (2015) en
ont proposé une mise à jour importante, enrichissant la base de données et en évaluant sa cou-
verture sur de grands corpus contemporains tels que Wikipedia, FrWac et Le Monde. Grâce
à sa modularité et à une architecture logicielle ouverte, MORFETIK favorise aujourd’hui la
réutilisation, l’intégration et l’extension des données dans différents environnements de TAL.

L’essor récent des modèles massifs (LLM) a transformé le paysage du TAL, mais la mor-
phologie demeure un domaine où les approches neuronales rencontrent encore des limites bien
documentées : erreurs d’accord, régularisations abusives, mauvaise gestion des formes rares,
ambiguïtés mal résolues, ou encore sur-génération de formes inexistantes. Ces phénomènes
montrent l’importance persistante de ressources morphologiques explicites pour garantir la
cohérence linguistique et interprétable des applications. Dans ce contexte, MORFETIK occupe



J. Arias et al.

une place stratégique en fournissant un inventaire morphologique exhaustif, structuré, contrôlé
par des linguistes et entièrement interopérable grâce à des formats normalisés et à une API
stable. MORFETIK est conçu pour être utilisé dans des pipelines hybrides modernes, où les
modèles neuronaux bénéficient de l’appui de ressources symboliques afin d’améliorer la pré-
cision, la robustesse et l’explicabilité : génération de cohorte d’analyses morphologiques pour
guider un modèle, vérification automatique des accords produits par un LLM, filtrage des sor-
ties morphologiquement invalides, supervision faible pour la construction de datasets annotés,
etc. Ainsi, loin de s’opposer aux approches actuelles, MORFETIK propose une complémenta-
rité forte qui renforce la qualité et la fiabilité des systèmes neuronaux contemporains.

Ce document est structuré de la manière suivante : la Section 2 est consacrée à l’analyse
des deux études de cas. Cette analyse permet de cerner les problématiques principales et de
justifier l’importance de MORFETIK. La Section 3 expose ensuite l’architecture de l’applica-
tion, en détaillant sa structure interne, les technologies employées et les interactions entre les
différents composants. Enfin, la Section 4 présente les conclusions et perspectives de ce travail,
en mettant en avant les contributions apportées et les pistes d’amélioration envisageables pour
des travaux futurs.

2 Études de cas

Cette section présente deux études de cas illustrant l’utilisation de MORFETIK dans des
contextes distincts. Ces études mettent en évidence les principaux atouts de l’application.

2.1 Recherche d’un terme

L’interface web de MORFETIK permet à l’utilisateur de rechercher un terme souhaité. Une
fois la requête soumise, le système interroge la base de données et affiche les résultats cor-
respondants de manière structurée. Comme l’illustre la Figure 1, l’interface offre plusieurs
options de filtrage, notamment la recherche stricte, sensible à la casse et sensible aux accents,
afin de permettre une exploration linguistique plus précise. Chaque résultat est en outre associé
à plusieurs ressources externes de référence, telles que FranceTerme, Neoveille ou Wiktionary,
facilitant ainsi l’accès à des informations complémentaires et à des contextes d’usage variés.

La Figure 1 illustre la recherche du terme “avions” mettant en évidence la capacité de
MORFETIK à gérer les phénomènes d’ambiguïté morphologique caractéristiques du français.
En effet, le système renvoie deux analyses distinctes correspondant à des catégories gramma-
ticales différentes. D’une part, “avions” est identifié comme un nom masculin pluriel, forme
fléchie du lemme avion. D’autre part, il est également reconnu comme une forme verbale
conjuguée, correspondant à la première personne du pluriel de l’imparfait de l’indicatif du
verbe avoir. Cette double analyse illustre la manière dont la ressource encode et distingue les
informations de catégorie lexicale, de flexion et de fonction morphosyntaxique, tout en main-
tenant une cohérence entre les différents modules lexicaux.

2.2 Intégration avec un pipeline TAL : le cas de ChêneTAL

MORFETIK présente une interface de programmation (API) rigoureusement définie, faci-
litant son interopérabilité avec des services externes. Cette API, permet une communication



Morfetik : Une ressource lexicale morphologique extensible et modulaire pour le français

FIG. 1 – Interface web de MORFETIK illustrant le processus de recherche d’un terme

structurée et fiable entre MORFETIK et d’autres plateformes. À titre d’exemple, la plateforme
ChêneTAL (i.e., une plateforme d’expérimentation sur des outils TAL et d’IA) peut exploi-
ter cette interface afin d’accéder aux fonctionnalités offertes par MORFETIK et d’intégrer ses
données dans ses propres processus applicatifs.

Pour illustrer le mode d’accès aux ressources offertes par l’API de MORFETIK, considérons
la requête permettant de récupérer l’ensemble des verbes disponibles dans le système.

GET /verbs Récupérer tous les verbes

Cette opération repose sur la méthode GET du protocole HTTP, qui vise à interroger une
ressource sans en modifier l’état. L’exemple ci-dessous présente la requête envoyée à l’API,
ainsi que la réponse correspondante en format JSON :

bash

> curl https://tal.lipn.univ-paris13.fr/morfetik2/api/verbs

[

{

"id": "019a4a37-cf8d-762e-a0f2-b5101661d7d9",

"value": "avoir",

"codeId": "019a4a37-cf7d-77de-9a4a-661e213fc062",

"category": "VERB",

"notes": "",

"rare": false,

"domain": "",

"subcategory": null

},



J. Arias et al.

...

]

3 Architecture

Cette section présente l’architecture de MORFETIK et décrit les principes fondamentaux
ainsi que les avantages en termes de flexibilité, de maintenabilité et d’évolutivité.

MORFETIK repose sur le paradigme de l’architecture “ports et adaptateurs” ou “hexa-
gonale” (Cockburn et de Paz, 2024), un modèle qui sépare clairement la logique métier des
technologies externes. La logique métier définit les règles et comportements essentiels de l’ap-
plication sans se soucier de la manière dont les données sont stockées, affichées ou échangées.
Les interactions avec le monde extérieur passent par des ports, qui représentent des interfaces
abstraites. Ces ports sont concrétisés par des adaptateurs, qui traduisent les interactions abs-
traites de la logique métier en opérations concrètes avec les composants externes, tels que les
bases de données ou les interfaces utilisateur.

Grâce à cette approche, MORFETIK est hautement modulaire et extensible. Différents types
de clients peuvent consommer les mêmes fonctionnalités métiers sans modification du cœur
du code. Par exemple, au-delà de l’interface graphique actuelle, il serait simple d’ajouter une
interface en ligne de commande (CLI) ou un script pour de scrapping. Cette flexibilité favorise
la réutilisation du code et la cohérence fonctionnelle entre plusieurs points d’accès.

L’un des autres avantages majeurs de cette architecture réside dans sa résilience face aux
évolutions technologiques. Comme la logique métier ne dépend d’aucune technologie spéci-
fique, il devient possible de remplacer ou de faire évoluer des composants techniques sans
impact majeur sur le reste du système. Par exemple, l’application utilise actuellement Post-
greSQL comme système de gestion de base de données, mais il est facile d’intégrer un autre
moteur de base de données, ou d’expérimenter différentes configurations afin d’optimiser les
performances et la rapidité d’exécution des requêtes.

La Figure 2 illustre l’architecture logicielle actuelle de MORFETIK. Cette architecture est
composée de deux grandes parties :

1. Morfetik UI : Le frontend, ou interface utilisateur (UI), représente la couche avec
laquelle les utilisateurs interagissent directement. Les requêtes des utilisateurs sont en-
voyées au backend sous forme de requêtes HTTP, et les réponses sont retournées en
format JSON. Il est développé avec le framework Vue.js, qui permet de concevoir des
applications web modernes, dynamiques et ergonomiques en s’appuyant sur des tech-
nologies standards du web telles que HTML, CSS et JavaScript. Par conséquent, l’uti-
lisation de MORFETIK ne requiert aucune installation préalable : l’utilisateur peut y
accéder directement à partir de n’importe quel navigateur web.

2. Morfetik API : Le backend, ou API de l’application, a pour rôle de consulter la res-
source, de traiter les informations et de retourner les résultats de manière structurée au
frontend. Il est développé avec le framework AdonisJS et il est organisé en couches
suivant les principes de l’architecture hexagonale, à savoir :

— Les adaptateurs entrants gèrent les interactions avec le monde extérieur. Dans notre
cas, il s’agit des contrôleurs qui reçoivent les requêtes HTTP du frontend, les valide



Morfetik : Une ressource lexicale morphologique extensible et modulaire pour le français

Adaptateurs sortants (logique d’infrastructure)

Hexagone (logique métier)

Adaptateurs entrants (logique de présentation)

� Backend – Morfetik API

�
Utilisateurs

Ce que les utilisateurs voient

et avec quoi ils interagissent

HTML, CSS, JavaScript

 Frontend – Morfetik UI

Plateforme d’expérimentation

sur des outils de TAL et d’IA

https://tal.lipn.

univ-paris13.

fr/chenetal

� ChêneTAL

Interface en ligne

de commande (CLI)

� Morfetik CLI

...

Intégrations Possibles

VerbController

VerbService Verb

VerbRepository

Postgres

VerbRepository

Ports entrants

Ports sortants

 
Base de données

Requête HTTP

Réponse JSON

Requête

Affichage des

résultats

FIG. 2 – Architecture logicielle de MORFETIK

et délègue leur traitement aux services internes appropriés. Par exemple, le contrô-
leur VerbController expose des endpoints HTTP permettant d’invoquer les
opérations de création, de consultation, de mise à jour et de suppression (CRUD)
sur les verbes.

— Le cœur de l’application regroupe la logique métier proprement dite, structurée au-
tour de services et d’entités. Les services définissent les règles métier et orchestrent
les interactions entre les différents ports, tout en demeurant indépendant de toute
technologie ou infrastructure spécifique. À titre d’exemple, nous présentons uni-
quement le service VerbService et l’entité Verb, qui incarnent le modèle appli-
catif pour les verbes. Néanmoins, cette logique s’étend à l’ensemble des catégories
morphologiques couvertes par MORFETIK.

— Les adaptateurs sortants assurent la communication entre la couche métier et les in-
frastructures externes, notamment les systèmes de persistance. Par exemple, l’adap-
tateur PostgresVerbRepository implémente le port VerbRepository,
offrant au service métier un accès abstrait et unifié aux données. Cette séparation
entre la logique métier et les détails techniques du stockage favorise un faible cou-
plage, une meilleure testabilité et facilite le remplacement ou l’évolution des com-
posants d’infrastructure sans impacter la logique métier.

Il est important de souligner que la Figure 2 illustre de manière simplifiée un contrôleur
(VerbController), un service (VerbService) et une entité métier (Verb). Cette repré-
sentation est illustrative : dans la réalité, l’architecture couvre l’ensemble des éléments lexi-
caux, chaque composant étant défini de manière générique et modulaire pour permettre l’ajout
de nouveaux services, entités ou adaptateurs sans modifier les couches existantes.

MORFETIK est doté d’un moteur de flexion (voir Figure 3). Il assure la génération des



J. Arias et al.

formes fléchies à partir d’un lemme et de son code morphologique. Chaque lemme est catégo-
risé par sa catégorie grammaticale (e.g., verbe, nom, etc.) et par un code qui spécifie les règles
morphologiques (i.e., radical et terminaison). Ce sont les deux informations nécessaires à la
génération de forme. À partir de cette combinaison, le moteur de flexion applique les règles
morphologiques sur le lemme afin de produire l’ensemble des formes. Il s’agit de conjugaison
pour les verbes, et de flexions nominales et adjectivales pour les noms et adjectifs. Ainsi, le mo-
teur de flexion de MORFETIK permet de dériver automatiquement toutes les formes correctes
d’un lemme grâce au code morphologique qui lui est associé, garantissant donc la cohérence
linguistique.

Lemmes

e.g., verbe, nom, etc.

Codes

e.g., code de verbes,
code de noms, etc.

Moteur de flexion

Interprète les lemmes et
leurs codes pour générer

l’ensemble des formes fléchies

Formes fléchies

(toutes variantes générées)

FIG. 3 – Moteur de flexion de MORFETIK

4 Conclusion et perspectives

Dans cet article, nous avons présenté MORFETIK, une application open-source permettant
de consulter une ressource lexicale. Elle est évolutive, indépendante des technologies sous-
jacentes et facilement extensible grâce à son architecture. Nous avons également illustré son
fonctionnement à travers deux études de cas, qui mettent en évidence sa robustesse et sa perti-
nence, ainsi que son apport pour la gestion et la consultation de données lexicales.

Pour les travaux futurs, plusieurs axes d’amélioration sont envisagés : optimiser les per-
formances des requêtes pour obtenir les résultats plus rapidement ; effectuer des benchmarks
de différents moteurs de base de données afin de sélectionner celui le plus adapté à notre cas
d’usage, ainsi que des benchmarks comparatifs de performance pour situer notre approche par
rapport à l’existant ; enrichir l’interface graphique en intégrant les retours d’expérience ; et dé-
velopper un plugin web permettant d’ajouter plus facilement de nouveaux éléments lexicaux.

Références

Batsuren, K., O. Goldman, S. Khalifa, N. Habash, W. Kieras, G. Bella, B. Leonard, G. Ni-
colai, K. Gorman, Y. G. Ate, M. Ryskina, S. J. Mielke, E. Budianskaya, C. El-Khaissi,
T. Pimentel, M. Gasser, W. A. Lane, M. Raj, M. Coler, J. R. M. Samame, D. S. Camaiteri,
E. Z. Rojas, D. L. Francis, A. Oncevay, J. L. Bautista, G. C. S. Villegas, L. T. Hennigen,
A. Ek, D. Guriel, P. Dirix, J. Bernardy, A. Scherbakov, A. Bayyr-ool, A. Anastasopoulos,
R. Zariquiey, K. Sheifer, S. Ganieva, H. Cruz, R. Karahóga, S. Markantonatou, G. Pavlidis,



Morfetik : Une ressource lexicale morphologique extensible et modulaire pour le français

M. Plugaryov, E. Klyachko, A. Salehi, C. Angulo, J. Baxi, A. Krizhanovsky, N. Krizhanovs-
kaya, E. Salesky, C. Vania, S. Ivanova, J. C. White, R. H. Maudslay, J. Valvoda, R. Zmigrod,
P. Czarnowska, I. Nikkarinen, A. Salchak, B. Bhatt, C. Straughn, Z. Liu, J. N. Washington,
Y. Pinter, D. Ataman, M. Wolinski, T. Suhardijanto, A. Yablonskaya, N. Stoehr, H. Dolatian,
Z. Nuriah, S. Ratan, F. M. Tyers, E. M. Ponti, G. Aiton, A. Arora, R. J. Hatcher, R. Kumar,
J. Young, D. Rodionova, A. Yemelina, T. Andrushko, I. Marchenko, P. Mashkovtseva, A. Se-
rova, E. Prud’hommeaux, M. Nepomniashchaya, F. Giunchiglia, E. Chodroff, M. Hulden,
M. Silfverberg, A. D. McCarthy, D. Yarowsky, R. Cotterell, R. Tsarfaty, et E. Vylomova
(2022). Unimorph 4.0 : Universal morphology. In LREC, pp. 840–855. European Language
Resources Association.

Buvet, P., E. Cartier, F. Issac, Y. Madiouni, M. Mathieu-Colas, et S. Mejri (2009). Morfetik,
ressource lexicale pour le TAL. In TALN (Articles courts), pp. 217–226. ATALA.

Cartier, E. (2017). Neoveille, a web platform for neologism tracking. In EACL (Software

Demonstrations), pp. 95–98. Association for Computational Linguistics.

Cockburn, A. et J. M. G. de Paz (2024). Hexagonal Architecture Explained : How the Ports &

Adapters Architecture Simplifies Your Life, and How to Implement It. Humans and Techno-
logy Press.

Hathout, N., F. Sajous, et B. Calderone (2014). Glàff, a large versatile french lexicon. In LREC,
pp. 1007–1012. European Language Resources Association (ELRA).

Mathieu-Colas, M., E. Cartier, et A. Grezka (2015). Dictionnaires morphologiques du français
contemporain : présentation de morfetik, éléments d’un modèle pour le TAL. In TALN, pp.
150–156. ATALA.

Sagot, B. (2018). A multilingual collection of conll-u-compatible morphological lexicons. In
LREC. European Language Resources Association (ELRA).

Sagot, B., L. Clément, É. V. de la Clergerie, et P. Boullier (2006). The lefff 2 syntactic lexicon
for french : architecture, acquisition, use. In LREC, pp. 1348–1351. European Language
Resources Association (ELRA).

Summary

Morphological lexical resources, describing the internal structure of words and their in-
flected forms, are crucial for natural language processing (NLP) and computational linguistics.

We present MORFETIK, a comprehensive open-source lexical resource for French, capable
of automatically generating and identifying all inflected forms of words (nouns, verbs, adjec-
tives, phrases, etc.). It offers broad coverage of the contemporary and specialised lexicon, an
extensible and modular architecture, and easy integration with external resources.

We also illustrate its use through two case studies and detail its architecture, showing how
its modularity and interoperability facilitate corpus analysis and the development of NLP tools.


