RNTI

MODULAD
Modèle décisionnel basé sur la qualité des données pour sélectionner les règles d'associations légitimement intéressantes
In EGC 2006, vol. RNTI-E-6, pp.593-598
Résumé
Dans cet article nous proposons d'exploiter des mesures décrivant la qualité des données pour définir la qualité des règles d'associations résultant d'un processus de fouille. Nous proposons un modèle décisionnel probabiliste basé sur le coût de la sélection de règles légitimement, potentiellement intéressantes ou inintéressantes si la qualité des données à l'origine de leur calcul est bonne, moyenne ou douteuse. Les expériences sur les données de KDD-CUP- 98 montrent que les 10 meilleures règles sélectionnées d'après leurs mesures de support et confiance ne sont intéressantes que dans le cas où la qualité de leurs données est correcte voire améliorée.