RNTI

MODULAD
Extraction efficace de règles graduelles
In EGC 2009, vol. RNTI-E-15, pp.199-204
Abstract
Les règles graduelles suscitent depuis quelques années un intérêt croissant. De telles règles, de la forme “Plus (moins) A1 et ... plus (moins) An alors plus (moins) B1 et ... plus (moins) Bn” trouvent application dans de nombreux domaines tels que la bioinformatique, les contrôleurs flous, les relevés de capteurs ou encore les flots de données. Ces bases, souvent composées d'un grand nombre d'attributs, restent un verrou pour l'extraction automatique de connaissances, car elles rendent inefficaces les techniques de fouille habituelles (règles d'association, clustering...). Dans cet article, nous proposons un algorithme efficace d'extraction d'itemset graduels basé sur l'utilisation des treillis. Nous définissons formellement les notions de gradualité, ainsi que les algorithmes associés. Des expérimentations menées sur jeux de données synthétiques et réels montrent l'intérêt de notre méthode