HierarX : un outil pour la découverte de hiérarchies dans des espaces hyperboliques à partir de similarités
Abstract
This article introduces the HierarX tool which projects multiple datasources into hyperbolic
manifolds : Lorentz or Poincaré. From similarities between word pairs or continuous word
representations in high dimensional spaces, HierarX is able to embed knowledge in hyperbolic
geometries with small dimensionality. Those shape information into continuous hierarchies.
This work presents the HierarX workflow as well as its main use-cases.