RNTI

MODULAD
Apprentissage multi-vues pour la recommandation dans le domaine du pneumatique
In EGC 2021, vol. RNTI-E-37, pp.261-268
Abstract
We are constantly using recommender systems, often without even noticing. They build a profile of our person in order to recommend the content we will most likely be interested in. The data representing the users, their interactions with the system or the products may come from different sources and be of a various natures. Our goal is to use multi-view learning approaches to improve our recommender system and improve its capacity to manage multi-view data. We propose a comparative study between several state of the art multi-view models applied to our industrial data. Our study demonstrates the relevance of using multi-view learning within recommender systems.