Extraction de connaissances à partir de données textuelles : application à la découverte de règles de changement d'usage des sols
Abstract
This work presents an approach to automatically extract expert knowledge from textual
data, focusing on land use change dynamics in West Africa. The main objective is to identify
relevant text segments from a corpus of scientific articles in English, using automatic language
processing and machine learning methods. We compare two supervised classification
approaches with an unsupervised approach based on semantic proximity and show their ability
to identify relevant information from unstructured data.