Méthode basée sur les ensembles approximatifs pour l'apprentissage incrémental en présence des données déséquilibrées
Abstract
This paper proposes a method based on the rough set theory and dedicated to the incremental
supervised learning in a context of unbalanced data. This method consists of three phases:
the construction of a decision table, the inference of a set of decision rules, and the classification
of each potential action in one of the predefined decision classes. The MAI2P method is
validated in the context of MOOC (Massive Open Online Course).